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ABSTRACT  Article History 

Environmental changes resulting from climatic change, freshwater scarcity, and soil-water 

salinization necessitate an in-depth investigation and assessment of their impacts. The impact 

of soil and water salinization in a hot and hyper-arid region such as Oman is more obvious in 

the agriculture sector, especially in the Al-Batinah coastal region of the country. This study 

aimed to assess, map, and track soil in the study area using remote sensing techniques. 

Landsat images covering 36 years were acquired along with Cartosat and WorldView-2 

satellite images for accuracy assessment and validation. A satellite image-based salinity 

detection and delineation model was developed for the study area. The imagery was 

successfully classified with an overall accuracy of 80%, with supervised and unsupervised 

classification accuracy ranging from 76 to 84%, respectively. Spatiotemporal change detection 

identified that agricultural activity decreased by 30% (4.46km2) between 1985 and 2007 

compared to 17.1% (2.53km2) between 2007 and 2021. Moreover, soil salinity has extended 

farther inward from the shoreline as the salinity intensity increased from 36 to 60%. These 

findings can be attributed to the severe effects of saltwater intrusion, which led to the 

abandonment/shifting of farms from the shoreline to the land/mountains, resulting in 

urbanization. This study calls for urgent attention and decisive action to improve area 

management and optimize freshwater resources in hot and hyper-arid environments.  
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INTRODUCTION 

 

 The overexploitation of coastal groundwater leads to 

salt accumulation in the soils (Abulibdeh et al., 2021). Soil 

salinity has a detrimental influence on soil's 

physicochemical properties, plant development and 

production, ecosystem biological processes, and soil and 

water resources (Ren et al., 2019; Wen et al., 2019; Guo et 

al., 2023). As salinity levels increase, plants face serious 

difficulties in extracting water from the soil, causing water 

stress conditions. Moreover, the accumulation of salts in 

the soil can cause plant toxicity, nutrient imbalances 

(Ashrafi et al., 2018), and a decrease in water infiltration 

rates (Jarraya & Benabdallah, 2020). Hence, soil salinity has 

been pointed out as one of the main factors that limited 

plant growth in arid and semi-arid areas (Foster et al., 

2018; Abuelgasim & Ammad, 2019; Taghizadeh-Mehrjardi 

et al., 2021; Smanov et al., 2023). Remote sensing has 

repeatedly been used as a promising tool to obtain 

information regarding soil properties (Ben-Dor et al., 2018; 

Gorji et al., 2019; Suleymanov et al., 2023), land 

degradation processes (AbdelRahman et al., 2019; 

Abdelrahman, 2023) and canopy biophysical properties 

(Oteman et al., 2019; Neinavaz et al., 2021; Raj et al., 2021). 

 The precise assessment of salinization intensity, 

extent, and trends is important for better management of 

soil and water resources. The use of remote sensing tools 

is useful for the identification of salt distribution, the 

detection of its spatial and temporal changes, the 

prediction  of further soil degradation and the selection of  
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the best remediation methods. Data from soil salinity maps 

generated by remote sensing were found to be in good 

agreement with those obtained from traditional methods 

that depended on laboratory chemical measurements 

(Goldshleger et al., 2012; Ibrahim, 2016; Khadim et al., 

2019; Ren et al., 2019; Wen et al., 2019; Abulibdeh et al., 

2021; Arora et al., 2021; Kurbatova et al., 2021; Prajapati et 

al., 2021). To use remote sensing data effectively, one must 

know and understand the spectral characteristics of the 

features under investigation. This can be accomplished 

through a better understanding of the behavior of 

different wavelength combinations on different soil salinity 

(Shahid et al., 2010; Al-Jubouri & Wheib, 2020). Ibrahim 

(2016) stated that the sodium absorption ratio (SAR) is an 

important factor for soil salinity mapping using satellite 

imagery, even at the initial salinity stages in arid and semi-

arid regions. Abuelgasim & Ammad (2019) applied 

shortwave infrared and near-infrared imagery to map soil 

salinity by developing a soil salinity index model. 

 Using conventional remote sensing data, most 

researchers have focused on mapping saline areas or 

differentiating between saline and non-saline soils (Gorji et 

al. 2019; Ghazali et al., 2020). Remote sensing observations 

have often concentrated on severely saline soils while 

neglecting the slightly affected areas, which must be the 

target when dealing with soil degradation. Abulibdeh et al. 

(2021) mapped groundwater salinity by investigating 

58,000 water wells categorized the salinity into five classes 

from high to low salinity levels, and concluded that the 

groundwater salinity increased relative to space and time. 

Ren et al. (2019) integrated soil sampling with Chinese 

HuanJing-1 satellite imagery and a dynamic model for 

analyzing the salinity level in the Hetao irrigation district, 

Inner Mongolia. They concluded that soil salinity 

depended on groundwater depth. Ashrafi et al. (2018) 

examined the effect of salt stress on the growth and ion 

accumulation of the alfalfa crop at the Isfahan University of 

Technology, Iran. 

 Zhang et al. (2011) studied the accuracy of available 

vegetation indices for the estimation of soil salinity and 

reported that the vegetation index (VI) group, which 

included the normalized difference vegetation index (NDVI), 

soil-adjusted vegetation index (SAVI), and transformed soil-

adjusted vegetation index (TSAVI), was least affected by 

topographical factors in their study; allowing a good 

detection of vegetation change in large regions. Nguyen et 

al. (2020) assessed the soil salinity intrusion in the coastal 

area using Landsat 8 near-infrared bands and soil sampling 

techniques and utilized the SAVI, NDVI, and vegetation soil 

salinity index (VSSI) to perform statistical analysis of electric 

conductivity (EC) values from soil samples and the 

previously mentioned VI resulting in a strong correlation 

with R2=0.89 between the soil salinity estimation using 

Landsat-8 satellite imagery and in situ measurement of soil 

salinity from soil samples. It is important to underline that 

when vegetation density is very low, such as in hyper-arid 

and arid regions, soils become the main contributing 

factor in the reflectance measured by the remote sensing 

system (Prudnikova & Savin, 2018). Thus, plant canopy 

reflectance strongly affects soil variation reflectance 

(Prudnikova et al., 2019). Huete & Jackson (1987) first 

indicated the influence of soil variations on spectral 

reflectance and found that in semi-arid and arid regions, 

where the vegetation cover is typically less than 30%, the 

NDVI values were lower at similar vegetation percentages 

in lighter soil than in darker soil. 

 Several studies have examined the performance of the 

above-mentioned VIs in areas with low vegetation covers. 

Goldshleger et al. (2012) proposed a new member for the 

SAVI family and introduced a generalized soil-adjusted 

vegetation index (GESAVI) and compared it with other VIs, 

including the NDVI, SAVI, perpendicular vegetation index 

(PVI), optimized soil-adjusted vegetation index (OSAVI), 

and TSAVI. They found that the GESAVI and then the SAVI 

and OSAVI were the most accurate VIs. Comparing several 

vegetation indices as a proxy to monitor soil salinity, 

Zhang et al. (2011) reported that most vegetation indices 

had weak relationships with soil salinity except the SAVI. 

Alamdarloo et al. (2018) calculated the temperature 

condition index (TCI) and the vegetation condition index 

(VCI) using land surface temperature (LST) (MODIS product 

MOD11A2 and MOD13A2) in different climatic regions of 

Iran. Their study stated that vegetation health is affected 

by the differences in climatic and topographical conditions. 

A study of the trend assessment of drought in Saudi Arabia 

was conducted using the NDVI, a rainfall dataset, and LST 

estimation (Hereher et al., 2022). Their study measured a 

decline in vegetation and an increase in LST (locally) for 

the study period. Al-Mulla & Al-Adawi (2009) mapped the 

temporal changes of soil salinity in the Al-Rumais/Barka 

region of Oman using Landsat satellite images of three 

different dates (1991, 2005, and 2007) and claimed that 

remote sensing techniques provided good evidence of 

extreme saline soil mapping. 

 In coastal areas around the globe, soil salinity is an 

augmenting issue that directly affects the natural 

environment and causes economic losses by directly 

Impacting food safety and agricultural productivity 

(Nguyen et al., 2020). Therefore, soil salinity monitoring is 

important for the efficient management of salinity-affected 

areas through remediation and utilization processes of the 

affected soil. The impact of the salinity in Oman is obvious 

in the agriculture sector, especially in the Al-Batinah 

coastal region (Abulibdeh et al., 2021), which is the main 

agricultural area in the country (Siebert et al., 2007). This 

salinity area covers an extensive region between 10 and 

30km wide from the sea toward the land (Abulibdeh et al., 

2021). This coastal region extends from the capital Muscat 

to the United Arab Emirates (UAE) border for a total 

distance of about 270km. Hussain et al. (2006) reported 

that there was no salinity issue in this region at the end of 

the 1970s and the issue arose in the 1980s and 1990s with 

the increase in agriculture and groundwater extraction. 

Ibnouf & Abdelmagid (1994) observed a 38% increase in 

the salinity level in the Batinah region. Al-Ajmi & Abdel 

Rahman (2001) found that excessive groundwater 

pumping led to seawater intrusion, resulting in an increase 

in soil salinity and a decrease in soil fertility. 

 The above studies which were carried out in Oman 

have shed important light on soil salinity across a broad 
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region. However, there is a significant opportunity to 

delve deeper into long-term soil salinity patterns by 

utilizing high-resolution satellite imagery. This study 

provides a more comprehensive understanding of soil 

salinity dynamics over time, paving the way for more 

effective management strategies. The impact of salinity on 

soils and water significantly threatens agricultural 

production and vegetation, necessitating urgent 

investigation into its detection, mapping, and effects. 

Additionally, the above-mentioned previous studies show 

a clear research gap in integrating salt-affected studies in 

Oman with remote sensing techniques, highlighting the 

need for targeted research in this area. The main objective 

of this study was designed to (i) assess the soil salinity 

status in the hot and hyper-arid conditions of the Al-

Batinah coastal region of Oman using in situ soil and 

vegetation measurements; (ii) estimate and assess soil 

salinity by remote sensing tools based on change 

detection techniques from 1985 to 2021; and (iii) 

spatiotemporal mapping and classification of the soil 

salinity of the studied area. This study shall fill a decisive 

gap of utilizing satellite imagery to present a 

comprehensive overview of the spatiotemporal changes in 

soil and water deterioration due to increasing salinity 

along the coast of Oman. The trends identified will serve 

as valuable tools for reclamation strategies, aiding 

decision-makers and policymakers in various sectors, 

including urban and agricultural planning. 

 

MATERIALS & METHODS 

 

 Fig. 1 shows the flow diagram of the study design 

including the satellite imagery processing, vegetation 

change detection, soil salinity machine learning model 

development, classification, and construction of results 

using in-situ measurement from the soil sampling.  

 

 
 

Fig. 1: Flowchart illustrating the methodology of work. 
 

Study Area 

 The study area is located in the Al-Batinah region in 

the northern part of Oman along the coastal line 150km 

north of Muscat (Fig. 2). It lies between 24° 06´ 06˝ north 

and 56° 55´ 48˝ east. This study area has a hot and hyper-

arid climate characterized by an average annual 

temperature of 26.9 °C but can reach up to 37 °C during 

the summer months of June and July with an average 

annual rainfall of 74 mm (Ali et al., 2021). The study area is 

mostly covered with sandy to silty clay soil (Béchennec et 

al., 1992; Al-Rawas et al., 2006) as it is located between the 

coastal plain and coastal sediments, which are linked to the 

geology of the north mountain ranges; tectonically placed 

with late Paleozoic, Mesozoic continental margin, and 

Tethys deep-sea sediments, as well as a slab of Cretaceous 

oceanic crust and mantle (Robertson et al., 1990). The 

Sultanate in general, including the study area, depends on 

groundwater from springs and wells. Aquifers are 

replenished by occasional rainfall while the renewable 

groundwater supplies are estimated at 1300 million m3 

annually (Al-Jazi & Almaany, 2020).  

 

Soil Sampling and Analysis 

 Thirty soil samples were collected randomly (at a 

depth of 15 cm) with three replicates from each location 

from a 25x25m area. The latitude and longitude location of 

each sample (Fig. 3) were determined on the Landsat 

images and then followed on the ground using GPS (eTrex 

model from Garmin Ltd., USA). These samples were 

collected when the ground was covered with vegetation 

including halophytes. During field investigations, each 

sampled site was described in terms of land use, 

vegetation, and soil surface aspect, with particular 

emphasis on the surface crust. Analysis of the soil samples 

was conducted for the soil textural analysis by following 

the protocol of Beretta et al. (2014) and salinity (using 

JENWAY 4510), pH, and macro elements were measured 

by following the methods of Botero et al. (2010). 

 The soil water extracts were analyzed for 

microelements such as sodium (Na), phosphorus (K), 

calcium (Ca), magnesium (Mg), and chloride (Cl) using an 

inductively coupled plasma optical emission spectrometer 

(ICP-OES) in the Sultan Qaboos University. Soil texture 

analysis was conducted using hydrometer methods 

proposed by Bouyoucos, (1936) and soil class was 

determined with the International Soil Science Society 

(ISSS) triangle (Saxton et al., 1986). 

 

Satellite Images 

 Five cloud-free satellite images were generated using 

Landsat TM at Path “159” and Row “43” (acquired on 4 

February 1985), ETM+ at Path “159” and Row “43” 

(acquired on 3 July 2007), and OLI/TIRS at Path “159” and 

Row “43” (acquired 1 July 2021). The Landsat TM, ETM+, 

and OLI/TIRS sensors provided images with a 30-m pixel 

size. In addition, a stereoscopic earth observation satellite 

(Cartosat-1) geometrically corrected image for 2007 was 

provided by the Supreme Committee for Town Planning in 

the Sultanate of Oman. This process was repeated for the 

very high-resolution satellite (WorldView-2) image for the 

year 2021 provided by the Remote Sensing and GIS 

Research Center from Sultan Qaboos University, Oman. 

WorldView-2 was used as ancillary data for geometric 

correction of the Landsat images. The resolution of the 

Cartosat-1 image was 2.5m, while the resolution of 

WorldView-2 was 0.5m. The digital data processing was 

performed using ERDAS Imagine and ArcGIS Pro platforms. 
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Fig. 2: Location of (b) study area in (a) Oman. 

 

     
 

 

 
 

  
 

Fig. 3: The spatial distribution of the soil sample collection, numbered 1 to 30, indicating their soil texture (a) compared to the true-color composite red, 

green, and blue satellite image (b) of the study site. 

 

Geometric Correction 

 The acquired satellite images in this study were 

geometrically corrected to bring them all into standard 

projection. Thus, it was easier to conduct a change 

detection process by overlaying the different year images 

of the same area. Moreover, the geometric correction 

procedure helped in overlaying the lower-resolution 

images on the high-resolution images for validating the 

unsupervised classification process. The images were 

rectified to the World Geodetic System (WGS 84) using 

zone 40 Universal Transverse Mercator (UTM) projection. 

After that, 13 GCPs were determined in the Cartosat and 

WorldView-2 images, and then errors with GCPs were 

reduced by moving the position of points on the images. A 

root means square error (RMSE) of less than 0.2 pixels was 

achieved in matching the ETM+ 2007 and Cartosat images 

as well as the OLI/TIRS and WorldView-2. Many studies 

claimed that multi-temporal data analysis requires 

accurate geometric co-registration within an accuracy of 

one pixel or less (Mouat et al., 1993; Chughtai et al., 2021). 

First-order polynomial transformation with nearest-

neighbor resampling was used to resample the Landsat 

images to 25x25m pixel size. Nearest-neighbor resampling 

offers key advantages that make it an excellent choice for 

image processing. It effectively preserves the spectral 

values of the original dataset, ensuring minimal alteration 

of pixel brightness. This integrity is vital for reliable 

analyses. Additionally, its computational simplicity 

enhances efficiency, allowing for quicker processing 

without sacrificing quality. This combination of accuracy 

and ease of use makes it a preferred method in remote 

sensing applications (Campbell, 1987; Taunk et al., 2019; 

Bansal et al., 2022). 

 To perform a change analysis of vegetation, the 

Landsat TM image of 1985 was registered to the rectified 

Landsat ETM+ 2007 reference image. However, the 

second-order polynomial transformation was applied in 

the 2007 image using nearest-neighbor resampling. This 

was then resampled to a 25x25m pixel size. Eighteen 

image-to-image control points were selected and an RMSE 

of less than 0.2 pixels was achieved to match the Landsat 

TM 1985 image to the Landsat ETM+ 2007 rectified image. 

This procedure aimed to bring the two images to a 

standard projection, and they consequently fit each other. 
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Image Enhancement 

 In this study, image enhancement was performed to 

improve visual interpretation by increasing the distinction 

between healthy and unhealthy vegetation. This was 

achieved with spatial enhancement filtering. The Wallis 

Adaptive Filter (a specific filter found in ERDAS Imagine 

software) was used to enhance the visual appearance of 

the images. There are four different image enhancement 

functions in ERDAS Imagine. These are the Wallis Adaptive 

Filter, Sensor Merge, Texture Analysis, and Brightness 

Adjustment. The Wallis Adaptive Filter is an enhancement 

filter that adjusts an image based on the “contrast stretch” 

of the image gathered from a specific area within the image. 

After the Wallis Adaptive Filter enhancement was conducted 

it was easy to see the difference between the images. 

 

Image Transformations 

 Both the NDVI and SAVI were applied in this study 

because these vegetation indices are highly correlated with 

plant water content and thus the trees’ health (Al-Mulla & 

Al-Adawi, 2009; Zhang et al., 2011; Vani & Mandla, 2017; 

Nguyen et al., 2020). The two vegetation indices were 

calculated using ERDAS Imagine software based on 

Equations (1) and (2) following (Ali et al., 2021). 

 
𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑)                                   (1) 

 
𝑆𝐴𝑉𝐼 =  𝐿 + 1 [

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿
]                                   (2) 

 

Where NIR is the near-infrared band, Red is the red band, 

and L is the soil brightness correction factor. The two 

vegetation indices were produced for the Landsat OLI/TIRS 

2021, Landsat ETM+ 2007, and Landsat TM 1985. The NDVI 

and SAVI values were used for the visual separation of 

healthy and unhealthy vegetation where the values ranged 

between -1 (water surface) and +1 (dense green 

vegetation), while 0 corresponded to barren areas or soil. 

Since the values of L in Equation (2) differ with vegetation 

density from 0 for higher densities and 1 for lower 

densities, the SAVI was generated with a correction factor 

of 0.5 based on intermediate vegetation density. SAVI was 

later used for change detection of vegetation between 

1985, 2007, and 2021. Consequently, these indices 

displayed healthy vegetation as bright areas with a higher 

value of vegetation indices and unhealthy vegetation as 

different dark levels of gray, which were masked out from 

all other terrain features. 

 

Vegetation Change Detection Analysis Using SAVI 

 In change detection analysis, the main principle is that 

if any change in land cover occurs, it will cause a change in 

pixel response. The SAVI transformed images were used in 

detecting vegetation change in this study to minimize both 

soil background and atmospheric effects. Vegetation 

change analysis was performed as decreased, stable (no 

change), and increased using the SAVI images of 1985, 

2007, and 2021. The dataset included both years for the 

SAVI. Decreased, increased, and no change threshold 

values in vegetation were established and applied to the 

SAVI dataset. The values ranged from -1.0 to 1.0; the 

values below 0 indicated no vegetation, and values above 

0 indicated the density of the vegetation, as the SAVI uses 

L as the soil brightness correction factor to minimize soil 

brightness influences. 

 

Images Classification 

 Two methods were used to classify multispectral 

images: unsupervised and supervised. Since supervised 

classification utilizes visual interpretation or relevant 

ground truth data as baseline data, it can usually extract 

more realistic information and proves to be more accurate 

than unsupervised classification (Ioka & Koda, 1986; Chang 

et al., 2020; Richards, 2022). On the other hand, 

unsupervised classification does not require training sites 

for ground truthing as a basis for classification and groups 

the multispectral data into several classes based on the 

same intrinsic similarity within each class (Chang et al., 

2020; Mohammed et al., 2023). Since spectral signatures 

showed high variability within the classes in the study area, 

both methods of classification were used. 

 

Soil Salinity Estimation using Surface Reflectance 

 A multitude of studies have employed satellite, UAVs, 

and terrestrial radiometric techniques to identify and 

assess soils that are affected by salinity (Fan et al., 2016; 

Oteman et al., 2019; Ghazali et al., 2020; Abuzaid et al., 

2023). This study developed a model using an integrated 

approach that used satellite imagery to estimate soil 

salinity (Fig. 4). 

 

 
 

Fig. 4: Graphical layout of the integrated approach for soil salinity 

estimation. 

 

 The soil salinity model (equation 3) was created to 

estimate the soil salinity based on the spectral response of 

the soil to different wavelengths. To construct the model, 

Global Positioning Systems-based points were imported in 

the “ArcGIS Pro” and overlaid at the satellite imagery. Using 

this process, the relative pixel values were extracted using 

geoprocessing tools in the “ArcGIS Pro”. Then the model 

was constructed using the “Google Colab platform”. A 2D 

dataset was uploaded in the “Google Colab” and a total 

number of 70% of the data was used to train the model. 

Once the model was successfully trained, the model was 

run over the study area to create soil salinity maps. 

 
𝑆𝑆 =   𝛾0.45−0.52 𝜔1  +  𝛾0.52−0.60 𝜔2  +  𝛾0.63−0.69 𝜔3  

+  𝛾0.77−0.0.9 𝜔4  +  𝛾1.55−1.75 𝜔5  +  𝛾2.09−2.35 𝜔6  − 699  (3) 

 

Where, 𝛾𝑛   is the designated band (γ) with its wavelength 

(n) in nm, while ω1 = -3.495, ω2 = 9.5756, ω3 = 1.1744, ω4 

= 6.325, ω5 = -2.192, and ω6 = -1.208  



Int J Agri Biosci, 2025, 14(2): 209-222. 
 

214 

Unsupervised Classification 

 The unsupervised classification was performed using 

the ISODATA algorithm within the ERDAS image-

processing software package. Numerous research 

employed the ISODTA algorithm and reported positive 

outcomes in this field (King & Salem, 2012; Shahid, 2013; 

Lemenkova, 2021). It was performed on the images for the 

separation of vegetation cover existing in the study area 

(Vimala et al., 2020). A 95% convergence threshold was 

specified for the unsupervised classification of each image, 

and a total of 14 classes were specified in each case. This 

technique employed the computer-assisted formula to 

mathematically break up the components of the satellite 

data into different classes for qualitative and quantitative 

analysis. The maximum number of iterations used in the 

unsupervised classification was fixed at 25. 

 

Ground Truthing 

 The main purpose of ground observation in remote 

sensing applications is to help establish relationships and 

thus to convert the digital image data from feature space 

into information in geographical space (Gangjun, 1996; Wu 

et al., 2023). The utility of remotely sensed data depends 

on the capability to associate spectral response patterns 

recorded in the data with actual environmental ground 

attributes. During the fieldwork for the sampling period, 

the observations were recorded with the coordinates of 

the locations of samples, and pictures were taken to give a 

clear image of the site and vegetation. Then, intensive field 

visits were made to identify the land-cover classes on the 

high-resolution images, supported by the unsupervised 

classification. The land-cover classes were revised again to 

ensure the categorization of the land-cover classes was 

correct. GPS was used to locate different land-cover classes 

in the high-resolution image and unsupervised 

classification image. These classes were used as training 

classes for supervised classification (Table 1). 

 

Supervised Classification 

 Supervised classification generally falls into the field of 

statistical discriminate analysis in which training samples 

are extracted from known categories. Each unknown 

individual pixel is discriminated according to the statistical 

distance or similarity between the pixel and known sample 

clusters (Yu et al., 2019). It has been proved that the 

supervised classification is effective for monitoring salt 

buildup (Muller & van Niekerk, 2016; Fadda et al., 2019; 

Abulibdeh et al., 2021). By using the land-cover classes 

generated from ground truthing and the unsupervised 

classification, training regions were selected for supervised 

classification using the ArcGIS Pro software. On the false-

color composite (FCC), the classes were identified as 

polygons, and the maximum likelihood classification model 

was chosen by assuming that histograms of the bands of 

data were normally distributed. The classification model 

used was a maximum likelihood classifier, class reparability 

was estimated by calculating the transformed divergence, 

and then thematic maps were produced. 

 

Accuracy Assessment 

 Supervised classification accuracy can be evaluated 

through an error matrix, which is the most common 

procedure for expressing classification accuracy 

(Donoghue, 2001; Chughtai et al., 2021). The error matrix 

compares the classified data points to the reference 

ground-truthing dataset that includes the training classes. 

Classification accuracy assessments were created by 

comparing the supervised classification results with the 

field data. A stratified random scheme was used to identify 

the points for the classification accuracy assessments, 

where the stratification was determined by the land-cover 

category to ensure a representative range of test samples. 

The reference pixels were randomly selected by following 

the protocol of (Congalton, 1991). The overall percentage 

accuracy and the statistic kappa coefficient (K^) were 

calculated following the protocol of (Donoghue, 2001). The 

accuracy assessment was also produced for the 

unsupervised classification of the images by following the 

default procedure in the ERDAS Imagine package. Both the 

overall percentage accuracy and K^ were calculated. 

 

RESULTS 
 

Soil Analysis 

 The analysis of soil samples from the 30 sites within 

the study area revealed a constructive range of textures, 

from silty loams to silty clay (Fig. 3a). Notably, 28 of the 

samples demonstrated salinity levels above 4 dS m-1, while 

only 2 samples fell below this threshold, highlighting the 

prevalence of saline soils that provides an opportunity for 

targeted management strategies. The EC values ranged 

from 1.1 to 187.6dS m-1, with a mean of 67.5dS m-1, and 

pH values varied between 7.1 and 8.5 (Fig. 5). Salinity levels 

were observed to increase closer to the coastline of the 

Oman Sea, which indicates a need for coastal management 

practices. Conversely, further inland—especially in 

residential and non-cultivated areas—salinity levels 

decreased significantly due to the absence of irrigation 

practices. This presents an opportunity to explore 

sustainable  land-use  approaches to enhance soil health in 

 
Table 1: Land-cover classes used in fieldwork and earth observation data analysis in the study area. 

Land cover Description 

Healthy vegetation Healthy date palm trees, lime trees, mango trees, bananas, fodders such as alfalfa and Rhodes grass, and other trees, with 

some contribution from (Prosopis Juliflora) plants. 

Weak, unhealthy crops Unhealthy date palm trees, lime trees, fodders such as alfalfa and Rhodes grass, and different types of halophytes and shrubs 

Weak, scattered trees Prosopis trees and acacia plants, very weak, unproductive date palm trees, and scattered bushes. 

Urban One/two-floor houses. White or beige colors and flat roofs. 

Sand Mainly coastal sand and asphalted roads. 

Bare soil and scattered vegetation Bare soils with few bushes and cutting grass areas. 

Bare soil Bare soils with few acacia plants and shrubs. 

Bare soil with bushes Dark color reflectance soil with bushes. 

High saline soil High saline soils with salt crust in some areas, halophytes, soil with high gravel contents, and large, white-roofed buildings. 
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Fig. 5: Soil sample analysis results 

in the study area. Where salinity is 

in dS m-1 while Na, Mg, and Ca are 

in (value ×1000) ppm, 

 

 

those areas. The salinity levels increased in the cultivated 

areas where intensive agriculture activities took place 

because seawater intrusion increased salinity owing to the 

excessive groundwater extraction using wells mostly 

installed along the coastline (Abulibdeh et al., 2021). 

 

Vegetation Spectral Characteristics 

 Spectral response signatures of visible red and near-

infrared wavelengths for different plants and soil types in 

the study area were useful for distinguishing the response 

of a stressed plant canopy from that of an unaffected 

canopy. Stressed vegetation was identified by an increase 

in the visible red wavelength and a decrease in the near-

infrared. This could be due to a lack of pigments and the 

weakening of the cellular structure. The amount of green 

vegetation was found to be related to red absorption, 

which linearly decreases with increasing green vegetation. 

That is the basis of many vegetation indices such as the 

NDVI. Based on analysis, the mean difference between the 

SAVI values for both months (February and July) of the 

same year (2021) was within a range of 0.01 (Table 2). 

Moreover, the coefficients of variation for SAVI in February 

and July (in 2021) were 57 and 50, respectively. Hence, no 

substantial differences in the spectral signatures were 

found regardless of the month considered (i.e., images 

acquired in February and July). This might be because most 

of the vegetation and crops in the area are perennial. 

 
Table 2: Statistics of preliminary analysis of SAVI values for both months 

(February and July) of the same year (2021) over the study area. 

Month Mean Median Standard 

Deviation 

Coefficient of 

Variation (%) 

February, 2021 0.21 0.18 0.12 57 

July, 2021 0.22 0.19 0.11 50 

 

 The results (Fig. 6a) indicated that the 1985 image was 

characterized by lower reflectance in the visible red and 

higher reflectance in the near-infrared, compared to the 

other two images, especially in the old, cultivated area, 

which is closer to the Oman Sea coast, indicating a better 

green vegetation cover in 1985. Soils have higher spectral 

reflectance in visible red as compared with the 

surrounding vegetation. High saline soil, bare soil, bare soil 

with scattered vegetation, and bare soil with bushes are 

shown as different levels of bright colors in the images 

(Fig. 6a-c). These classes had much higher spectral 

reflectance in visible red and near-infrared wavelengths 

than the sandy soils. A comparison of 1985, 2007, and 

2021 images proved that the vegetation conditions in 1985 

were much better than in 2007, and vegetation conditions 

in 2007 were better than in 2021. 

 

Vegetation Indices 

 NDVI and SAVI, as spectral reflectance rationing 

models, were useful in enhancing the fine spectral 

variations that were difficult to detect on the original 

images. They were also effective in differentiating between 

healthy and unhealthy vegetation. NDVI transformation 

separated the soil and vegetation surfaces according to 

their visible red and near-infrared (NIR) contrast. SAVI 

transformation performed the same process by taking a 

soil contribution into account using the L factor. Healthy 

vegetation displayed a light color in both SAVI and NDVI 

images (higher vegetation indices values), stressed 

unhealthy vegetation corresponded to a gray color (lower 

vegetation indices values), and no vegetation exhibited 

black color (lowest vegetation indices values). Because no 

significant differences between NDVI and SAVI images 

were noticed (Fig. 6d) in this study, only SAVI images for all 

years were used (Fig. 6a-c). 

 

Soil Salinity Maps 

 Spectral analysis was utilized in this work to estimate 

the temporal and geographical maps of soil salinity. 

Numerous sites within the research area were geotagged, 

and the soil salinity was determined using these 

geotagged locations. The spectral response of the saline 

soil was considered to construct the soil salinity model 

using these salinity values. The spatiotemporal changes in 

the study region between 2007 and 2021 are depicted in 

Fig. 7. In the year 2021, soil salinity levels were uniformly 

distributed throughout the research area, accounting for 

about 40% of the total land. Fig. 7(a) illustrates that in the 

year 2007 soil salinity values were quite high, spread from 

North-West to South-East with the highest salinity along 

the seashore. The findings from the soil salinity maps 

reveal a significant increase in soil salinity over time.  
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Fig. 6: Soil-adjusted vegetation 

index (SAVI) images of (a) 1985, 

(b) 2007, and (c) 2021 for the 

study area and (d) 1 vs 1 graph 

between the SAVI and NDVI in 

the study period. 

 

   

 
 

Fig. 7: Spatiotemporal 

distribution of the soil salinity 

estimated using the developed 

model for the years (a) 2007 and 

(b) 2021. Here salinity is in dS m-

1. 
 

 

In 2007, approximately 35% of the land exhibited salinity 

levels classified as low to medium. However, by 2021, the 

situation had changed dramatically, with maps indicating 

that 63% of the region now fell within medium salinity 

levels, and 60% of the land displayed high to severe salt 

concentrations. Notably, 14% of the area had high salinity 

levels, primarily concentrated near the coastline. 

 

Vegetation Change Detection Analysis 

 The change detection analysis (Fig. 8) was produced 

using SAVI images with a 10% threshold from 1985 to 2007 

and from 2007 to 2021. Since there was no quantitative 

ground truth data available in 1985, the qualitative 

assessment of the changes in vegetation was based only on 

visual interpretation of the change in the image using image 

spatial distribution. Results showed that the 10% SAVI 

decrease in the vegetation of the study area from 1985 to 

2007 was estimated to be about 30.0% (4.46km2), 

representing a decrease in the agricultural area (i.e., stressed 

agriculture), while the increase was 23.8% (3.53km2), 

representing an increase in the agricultural area. At the same 

time,  about  46.2% (6.86km2) of the agricultural area did not  

 
 

Fig. 8: Overall changes of vegetation in the study area. 
 

change during this period. On the other hand, the 10% SAVI 

decrease in the vegetation of the study area from 2007 to 

2021 was evaluated at 17.1% (2.53km2) while the increase 

was 24.1% (3.57km2). For this period, about 58.9% of the 

studied area (8.75km2) did not change its vegetation. 
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Classification 

 From the unsupervised classification of the images, up 

to 14 training classes were produced (Fig. 9). Comparisons 

were made among the spatial distributions of each class for 

the images, and the spatial distribution of land cover was 

marked as a polygon on the high-resolution images. These 

classes were then labeled using high-resolution images 

along with field observations. The old urban area that 

contributed to the sand training class appeared in the 1985 

unsupervised classification image (Fig. 9a), but it was in 

neither the 2007 (Fig. 9b) nor the 2021 (Fig. 9c) image. The 

roofs of old residential buildings were made of asbestos 

with a color like sand. For that reason, these residential areas 

appeared like sand in the 1985 unsupervised classification 

image (Fig. 9a). These buildings, however, did not exist in 

recent years, and so they were not detected in the 2007 and 

2021 images. On the other hand, stressed and scattered 

trees within the halophytes category and moderately saline 

soil category, which appeared in the 2007 unsupervised 

classification image, did not appear in the 1985 image since 

there was no significant salinity stress in that year. 

 Cutting Rhodes grass and shrubs, along with stressed 

and scattered trees such as halophytes, Prosopis, and 

Acacia, were challenging to distinguish in both images. 

This difficulty arose because cutting Rhodes grass blended 

into the soil background, while the grown Rhodes grass 

displayed a light color associated with high vegetation 

index values. Additionally, distinguishing between bare soil 

mixed with scattered vegetation and bare soil with bushes 

proved to be problematic. Moreover, light-colored bare 

soil and moderately saline soil also presented challenges in 

classification. These difficulties stem from various factors, 

including the low resolution of the images, the presence of 

mixed types of cultivation, and the reflectance 

characteristics of halophytes. The category of soil with 

sand was a highly affected area. This category increased 

along the coastal line in the 2007 image, and high soil 

salinity measurements were found in this area. This 

category contained features that could not be 

differentiated because of low resolution. The spectral 

properties classified automatically did not consistently 

align with the physical characteristics required for accurate 

mapping. After establishing the ground-truthing and 

training sites, we produced up to nine classes of 

supervised classification images for the years 2007 and 

2021, as illustrated in Fig. 10. Because of the lack of high-

resolution images and no ground-truth data, imagery from 

the year 1985 could not be used.  

 

        

Fig. 9: Unsupervised 

classification of (a) 1985, 

(b) 2007, and (c) 2021 for 

the study area. 

 

 
 

 
 

Fig. 10: Supervised 

classification of (a) 2007 

and (b) 2021 for the study 

area. 
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 When comparing the classification results to the 

ground truth data and Cartosat images, most classes 

aligned well with the reference sites. However, certain 

areas proved challenging to match due to confusion 

arising from traditional mixed agricultural practices, where 

forages were often interspersed among date palm trees. 

The lower resolution of the Landsat ETM+ image further 

exacerbated this confusion. Nonetheless, low-stress and 

stressed vegetation, as well as scattered trees in halophyte 

regions, were more clearly distinguishable from other 

types of vegetation cover. Clear detection of stressed trees 

was difficult and complicated by low-resolution satellite 

data, which may have been related to the satellite's 

position at space altitude and the ground cover 

characteristics (Diner et al., 1999). Pixel value heterogeneity 

was present within an individual land cover, so the 

selection of accurate pixels was difficult and time-

consuming. One or all of these factors can alter the image-

based reflectance of a canopy. Despite all the limitations 

mentioned above, classification was performed 

successfully, resulting in the delineation of most of the 

land-cover classes. 

 

Accuracy Assessment 

 The accuracy of the unsupervised and supervised 

classifications was assessed by an error matrix. The overall 

accuracy of unsupervised classifications ranged from 76% 

to 84% with the kappa statistics coefficient ranging from 

0.74 to 0.82. The results (Table 3) also showed that 

supervised classifications had an overall accuracy of 80% 

and a K^ value of 0.77. 

 
Table 3: The overall accuracy (%) and Kappa Coefficient (K^) for Supervised 

and Unsupervised classification of Landsat TM 1985 and Landsat ETM+ 

2007 images. 

Classification Classification 

Accuracy (%) 

Kappa 

Coefficient (-) 

Supervised Classification 80 (2007) 0.77 (2007) 

Unsupervised Classification (2007) 76 0.74 

Unsupervised Classification (1985) 84 0.82 

 

DISCUSSION 
 

 Spectral response signatures of visible red and near-

infrared wavelengths helped distinguish between stressed 

and unaffected plant canopies (Davis et al., 2023; Morales-

Gallegos et al., 2023). Stressed vegetation showed an 

increase in visible red wavelength and a decrease in near-

infrared, likely due to a lack of pigments and weakened 

cellular structure. The relationship between green 

vegetation and red absorption, which decreases linearly as 

green vegetation increases, forms the basis for vegetation 

indices like NDVI and SAVI. The use of both the NDVI and 

SAVI in this study is crucial due to their strong correlation 

with plant water content, a key factor in tree health (Zhou 

et al., 2022; Morales-Gallegos et al., 2023). These indices 

provide vital insights into plant vitality, differentiating 

between healthy and stressed vegetation. This dual 

approach enhanced our assessments of salinity's impact 

on vegetation health in the Al-Batinah coastal region, 

fostering a deeper understanding of environmental effects 

and aiding in the development of effective management 

strategies. The vegetation index images provide a detailed 

depiction of a notable shift in agricultural areas, 

highlighting a movement toward the mountainous 

regions and away from the coastline of the Oman Sea. In 

the images from 1985 (Fig. 6a), we observe that the areas 

with the highest SAVI values, which reflect dense and 

healthy vegetation, were predominantly located close to 

the Oman Sea. However, by 2007 (Fig. 6b), a noticeable 

trend emerged where these higher SAVI values began to 

retreat from the coastline, indicating a change in land use 

or agricultural practices. By the year 2021 (Fig. 6c), this 

trend became more pronounced, as the regions with 

healthy vegetation were found much farther inland, 

demonstrating a significant transformation in agricultural 

practices and land utilization over the decades. The same 

trend was observed in many studies (Barwani & Helmi, 

2006; Al-Mulla & Al-Adawi, 2009; Asma et al., 2019; 

Abulibdeh et al., 2021) claiming that the salinity level 

increased and spread inward from the coastal line in the 

same period. This shift may reflect various factors, 

including soil salinization, climate change, urbanization, or 

changes in farming techniques, emphasizing the evolving 

relationship between agriculture and environmental 

conditions in this region. The findings from the salinity 

results (Fig. 5) obtained in the research indicated the same 

trend: soil salinity has extended farther inward from the 

shoreline as the region with salinity grew from 36% to 

60% in the analyzed area. Thus, it is confirmed that the 

agricultural area has shifted away from the Oman Sea 

coastline over 36 years. 

 This can be further explained by the availability of 

fresh water in the inland direction and by the variations in 

soil and water salinity, which increased continuously 

because of the over-pumping of groundwater that 

allowed the seawater intrusion phenomena to occur, as 

addressed by Food and Agriculture Organization of the 

United Nations (2009), Naifer et al. (2011) and Abulibdeh 

et al. (2021). Many studies also claimed that the irrigation 

water in the studied area had high salt levels (Al-Busaidi 

et al., 2022; Hereher & El-Kenawy, 2022). Vegetation 

change detection analysis suggested that the decline in 

agricultural activities was greater from 1985 to 2007 than 

from 2007 to 2021. There was a severe effect of seawater 

intrusion from 1985-2007, causing the 

abandoning/shifting of the farms from near the coastline 

inland, and most of the abandoned/shifted farms near the 

coastline were urbanized from 2007 to 2021. The results 

from Deadman et al. (2016) and Al-Aufi et al. (2020) 

observed the same trend in the Al-Batinah region. The 

study compellingly demonstrates a marked decline in 

agricultural activities over the examined period. The 

findings from the SAVI change detection analysis suggest 

that variations in the agricultural landscape are not solely 

the result of increases or decreases in farming areas. 

Other contributing factors may also play a role in the 

noted changes. Notably, in certain regions, vegetation has 

increased due to the introduction of invasive species like 

Prosopis juliflora and various halophytes. This particular 

species presents a serious threat to local biodiversity, as it 

grows more rapidly and adapts more effectively to 
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drought conditions than native plants, thereby 

undermining the ecological balance and the survival of 

indigenous flora (Dohai, 2007; Byalt & Korshunov, 2021; 

Hussain et al., 2021). 

 The classification results compared to the ground 

truth data and Cartosat images highlight a significant 

achievement, as most classes were closely aligned with the 

ground truth sites. However, it is important to note that 

discrepancies in certain regions arose due to the 

complexities of traditional mixed agricultural practices, 

particularly where forages are often interspersed among 

date palm trees. The low resolution of the Landsat ETM+ 

image also contributed to this confusion. The results of the 

interviews with the farmers indicated that the old, 

experienced farmers lost their agricultural land because 

they were no longer productive. These interviews helped 

understand the economic impact on farmers as incomes 

were very low or in some cases nonexistent from 

agricultural activities affected by soil salinity. These 

economic and environmental impacts also supported the 

findings by Al Jabri et al. (2019) for restrictions on farmers’ 

good living conditions. Agricultural areas with excellent 

production conditions were located further inland and 

primarily managed by new farmers who lacked sufficient 

experience. This situation led to a concerning trend where 

the most productive lands were rented out to foreign 

laborers who often relied on intensive farming practices. 

These practices disrupt proper land rotation and result in 

harmful accumulations of chemical fertilizers and 

pesticides. Moreover, the excessive use of flood irrigation 

systems is depleting groundwater resources and 

undermining land productivity as Alqasemi et al. (2021) 

claimed that 66 % of the farms were using flood irrigation 

techniques. It is crucial to address these issues by 

implementing sustainable farming techniques, promoting 

education for inexperienced farmers, and adopting 

efficient water management strategies to ensure the long-

term health and productivity of our agricultural lands. 

Immediate action is necessary to rectify these practices 

and safeguard the environment. Some new farmers had 

commercialized their farms to grow cash crops such as 

Rhodes grass, which needed higher amounts of water. 

 The salinity problems impacted the salt-affected areas 

environmentally, reducing plant quality and productivity. 

The relocation of the farms away from the coastal area also 

caused a reduction in fruit trees, strengthening the claim in 

a study by Al-Aufi et al., (2020) linking the impact of soil 

salinity. The impact of salinity on biological diversity also 

includes the limitation of native plant distribution and the 

promotion of exotic invasive plant species such as Prosopis 

juliflora, which can tolerate harsh saline conditions and 

occupy native plant species areas (Byalt & Korshunov, 

2021; Hussain et al., 2021). Furthermore, the current study's 

findings are consistent with those of Ahmed & Askri, 

(2016) claiming that the rapid increase in agricultural 

activities in the Sultanate of Oman, as well as the over-

pumping of fresh groundwater over the last three decades, 

has necessitated the need for comprehensive water use 

policies and total water resource management in Oman, 

particularly in Al-Batinah region. 

Conclusion 

 This study was conducted in hot and hyper-arid 

conditions of Al-Batinah, in the northern coastal area of 

the Sultanate of Oman, and detected high soil salinity 

levels near sea and irrigated regions. The change detection 

technique provided valuable results in monitoring the 

decrease, increase, and stability of the green cover at a 

regional level. The old urban area contributing to the sand 

training class appeared in the 1985 unsupervised 

classification image but was in neither the 2007 nor the 

2021 classification. These results indicated that the decline 

in agricultural activities was greater from 1985 to 2007 

than from 2007 to 2021. The seawater intrusion was severe 

from 1985-2007, causing an abandoning/shifting of the 

farms from near the coastline inland, and most of the 

abandoned/shifted farms near the coastline became 

urbanized from 2007 to 2021. Moreover, it was observed 

that agricultural activities declined in the studied period. 

The results of this study provide compelling evidence of 

declining agricultural production and elevated soil salinity 

levels. These findings unequivocally demonstrate the 

urgent need to address soil and water deterioration in the 

region through enhanced remote sensing studies. It is 

imperative to develop a comprehensive water well census 

and implement a robust system for water extraction 

concessions. Employing advanced technologies, 

particularly remote sensing data, is essential for effectively 

monitoring changes in the region at various resolution 

levels. Additionally, a collaborative effort among 

governmental organizations to establish an agricultural 

database is crucial. Furthermore, extensive reclamation and 

water resource management studies must be conducted to 

decisively reduce the environmental and social impacts of 

salinity. Modern cultivation systems such as hydroponic 

(soilless cultivation) systems in greenhouses and modern 

irrigation systems should be subsidized more in the Al-

Batinah region to reduce water consumption and increase 

the efficiency of water use. In addition, new salt-tolerant 

fodders should be introduced to the region. 
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