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ABSTRACT  Article History 

This bibliographic analysis provides a comprehensive overview of contemporary non-invasive 

technologies for soil mapping, with a particular focus on their implications for agricultural 

management, agroecology, and food security. We explored the advantages and limitations of 

remote and proximal sensing methods for soil moisture assessment. Recent advancements in 

geophysical moisture measurement techniques, such as electromagnetic induction and 

ground-penetrating radar, are examined in light of their effectiveness for soil moisture 

mapping at agricultural field scales. The critical need for reliable technologies to accurately 

map soil moisture content is emphasized, as precise moisture assessment is vital for 

optimizing agricultural practices and enhancing crop yields. This research is especially 

pertinent in the context of climate change, where the frequency and severity of droughts are 

increasing, necessitating improved water resource management strategies. By facilitating 

targeted irrigation practices and enabling the cultivation of higher yields with reduced inputs, 

these innovative technologies play a pivotal role in promoting sustainable land management 

and bolstering agroecological resilience. Furthermore, this study highlights recent findings 

from key reviews in the field, which provide insights into the integration of digital 

technologies in precision agriculture. Ultimately, this analysis underscores the essential role of 

advanced soil mapping methods in addressing challenges related to resource allocation and 

food production, thereby reinforcing global food security.  
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INTRODUCTION 

 

 Trends driven by an increasing global population 

observed and projected climate changes (Seneviratne et 

al., 2010), and the digital transformation of established 

production, technologies-particularly in agriculture 

(Rodriguez-Alvarez et al., 2009; Vereecken et al., 2014; 

Zeyliger & Ermolaeva, 2016; Scholz et al., 2018) have 

significantly heightened the demand for accuracy and 

reliability in information regarding the soil moisture 

content (Mujumdar, 2006; Bláhová et al., 2024).  

 One critical area of study where the spatial 

distribution patterns and temporal dynamics dominate the 

physical and biological phenomenons occurring in the 

Earth's subsurface is soil hydrology, also known as 

Hydropedology (Lin et al., 2006). This field is underpinned 

by the theory of hierarchical multi-level systems 

(Mesarovich et al., 1970), which serves as a framework for 

integrating several fundamental scientific disciplines: 

landscape science (Dyakonov, 1991; Puzachenko et al., 

2002), soil science (Kozlovsky & Goryachkin, 1996; 

Karpachevsky, 1997; Kozlovsky, 2003), soil physics (Globus, 

1969; Michurin, 1975; Voronin, 1986), and land hydrology 

(Velikanov, 1964; Antipov & Korytny, 1985; Kuchment et 

al., 1989). This interdisciplinary approach aims to 

investigate the water regime of soil cover with a focus on 

precision crop management and agroecology. 

 To achieve this aim, methods for studying hierarchical 

systems are employed. Those specifically linking 

measurement results and modeling with the spatial scale 

of geophysical surveys, as well as with the characteristics of 

relief,  soil  and  vegetation  cover  of  the  underlying layer 
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(Allen et al., 2009). In this actively developing 

interdisciplinary scientific direction, characteristics of 

moisture content (the product of soil moisture content and 

its volume) are examined from the perspective of the 

relevance of measurements conducted using geophysical 

methods with varying resolutions, ranging from several 

centimeters (Stagnitti et al., 1999) to several kilometers or 

more, and characteristic temporal ranges from seconds to 

years (Nielson et al., 2021; Robinson et al., 2008). 

 Information about soil moisture content addresses 

numerous theoretical and practical challenges. It is 

essential for enhancing our understanding of mass transfer 

processes within the porous structure of the soil-ground 

layer (Vereecken et al., 2008), as well as related heat 

exchange processes growth, and development of plants 

within a complex that links the soil-ground layer with 

vegetation cover and the atmospheric boundary layer 

(Topp, 2003; Robinson et al., 2008; Bogena et al., 2015; 

Rudolph et al., 2015). 

 The practical implications of utilizing data on soil 

moisture content extend to optimizing existing agricultural 

practices and developing innovative technologies rooted in 

the principles of digital agriculture (Adams & Cook, 1997; 

Ammar et al., 2024; Blackmore et al., 2006; Bramley, 2009). 

This research aims to enhance food security while 

promoting sustainable agricultural management by focusing 

on precision farming techniques and agroecological 

practices. Ultimately, the objective is to provide actionable 

insights that empower farmers to make informed decisions 

based on precise soil moisture data, thereby ensuring 

effective resource management and contributing to global 

food security in the face of climate crisis. 

 

Electromagnetic Soil Moisture Measurement 

 Electromagnetic soil moisture (SM) measurement 

methods are widely used to assess moisture content in 

different porous materials, including soils. These methods 

are classified as geophysical techniques for studying 

porous media of natural or anthropogenic origin. Other 

established methods for indirectly estimating SM include 

neutron moisture measurement, tensiometry, and 

conductometry which are primarily utilized in scientific 

research (Globus, 1987; Shock et al., 2016). 

 The physical principle for SM measurement relies on 

the significant differences in dielectric properties between 

the pore solution and the organic-mineral framework of 

the porous medium. The advantages of SM measurement 

methods include a) rapid and continuous measurements, 

b) adaptability to long-term monitoring conditions, and c) 

automation of measurements and data transmission. These 

benefits facilitate the development of novel devices and 

monitoring networks or adapt existing instrumentation to 

meet the specific requirements of research and agricultural 

projects (Kremer, 2002; Kaatze, 2010; Kaatze, 2012). The 

following are types of electromagnetic soil moisture 

measurement methods. 

 

Invasive Methods of Electromagnetic Soil Moisture 

Measurement 

 In most cases, invasive methods are employed to 

profile SM. These methods rely on sensors placed within 

the soil medium that measure either capacitive 

characteristics or the speed of reflected electromagnetic 

impulses, such as Time Domain Reflectometry (TDR) (Topp 

et al., 1984; Topp et al., 1996; Topp et al., 2003; Zatinatskii 

et al., 2007; Cataldo et al., 2009; Doo et al., 2009; 

Scheuermann et al., 2010; Skierucha et al., 2012;  Zhu et al., 

2012; He et al., 2021). The results from these 

measurements (Fig. 1) provide SM values in relatively small 

sampling volumes, typically ranging from several 

centimeters to several decimeters in all three spatial 

dimensions. Moving these sensors along the soil profile or 

establishing a network of vertically arranged sensors 

(referred to as SM profiling) makes it possible to obtain 

detailed SM values for individual layers (Ermolaeva & 

Zeiliguer, 2010). 

 When operated correctly, stationary invasive profilers 

can yield reliable layered data on SM with high frequency 

over extended periods and under varying weather 

conditions. However, there are notable disadvantages 

associated with using SM profilers for area monitoring, 

including a) spatial resolution dependence on the density 

of profiler installation and b) uncertainties arising during 

spatial extrapolation/interpolation of measurement results, 

particularly when installations are sparse. 

 

Non-Invasive Electromagnetic Methods for Soil 

Moisture Measurement 

 In parallel with invasive geophysical techniques, non-

invasive methods for measuring SM are being actively 

developed, focusing on assessing low-amplitude 

electromagnetic field characteristics. Prominent examples 

of these methods include Ground Penetrating Radar (GPR) 

(Fig. 2a) systems (Ulaby et al., 1996; Inman et al., 2002; 

Huisman et al., 2003; Annan, 2005; Jonard et al., 2011) and 

Electromagnetic Induction (EMI) systems (Huisman et al., 

2003; Klotzsche et al., 2018; Zeiliger & Tuluzakov, 2013). 

 GPR systems, which utilize active probing, and EMI 

devices (Fig. 2a) both fall under the category of 

instruments employing non-invasive electromagnetic 

methods. These tools allow for collecting soil moisture 

data with relatively high spatial resolution, suitable for 

measurement depths comparable to the root zones of 

most agricultural crops. A modified version of the EMI 

method enables layered moisture content measurements 

(Zeiliger & Tuluzakov, 2013). 

 However, the results obtained from GPR surveys can 

be sensitive to the characteristics of underlying layers (Das 

et al., 2011). A set of empirical models has been developed 

(D’Urso & Mario, 2006), which necessitates calibration in 

the studied area. A similar limitation applies to EMI 

systems, where pore solutions' chemical composition and 

concentration highly influence readings. The characteristic 

sizes of volumes measured using GPR and EMI techniques 

can range from several decimeters to several meters 

horizontally and vertically (Annan, 2005). These 

characteristics classify GPR and EMI methods as non-

invasive profiling techniques for assessing SM based on 

electromagnetic measurements. 

The movement of measuring devices for non-invasive 

profiling of SM on mobile platforms allows for varied
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Fig. 1: FieldScout TDR 350 Soil Moisture Meter (a) and Portable soil sampler Drill & Drop by Sentek (b) devices 

 

 
 

Fig. 2: Ground Penetrating Radar (GPR) – OKO-150 (a) and Ground Conductivity Meters EM38MK-2 from Geonix (b). 

 

movement trajectories to achieve comprehensive coverage 

of the monitoring area with the required data resolution. 

Consequently, data measurement arrays can be obtained 

for relatively large areas, and survey routes can be flexibly 

adjusted based on soil and vegetation characteristics. 

Moreover, integrating parallel driving systems on self-

propelled devices facilitates automation through Global 

Navigation Satellite System (GNSS) technology, making 

such surveys independent of time constraints. 

 Despite their advantages, non-invasive SM profiling 

methods have several drawbacks: a) relatively high cost, b) 

dependence on weather conditions, and c) lower 

resolution than invasive moisture profiling. To enhance the 

resolution of non-invasive profiling methods along the soil 

profile, ongoing research explores their combined use with 

other techniques, such as passive microwave radiometry 

(Jonard et al., 2011), non-invasive electromagnetic 

induction (Inman et al., 2002) and invasive profilometry 

(Zeiliger & Tuluzakov, 2013). Recent advancements in 

machine learning are also being integrated to improve the 

accuracy and efficiency of SM estimation. 

 In this context, the characteristic sizes of sampling 

zones in the horizontal direction can vary from several 

meters to several kilometers in a stationary state. This 

extensive range is primarily influenced by the altitude of 

the recording platform, where the receiving antenna is 

situated above the ground surface. Additionally, a critical 

dimension in measurements using synthetic aperture radar 

(SAR) is the depth from the surface, which typically ranges 

from several centimeters and is largely dependent on the 

granulometric properties of the upper soil layer 

(Franceschelli et al., 2020). 

 The characteristic sizes associated with sampling 

zones in SAR methods position them as a subcategory of 

non-invasive single-layer techniques. The deployment of 

advanced measuring equipment on space platforms 

facilitates the acquisition of nearly seamless coverage of 

SM content in the upper layer, regardless of weather 

conditions. This capability allows for high temporal 

repeatability at lower resolutions or medium repeatability 

with relatively high spatial resolution. 

 Another method within this subcategory of non-

invasive geophysical single-layer SM measurement 

techniques is the active measurement approach utilizing 

signals from Global Navigation Satellite Systems (GNSS), 

such as GPS and GLONASS (Katzberg et al., 2006; Larson et 

al., 2008; Larson et al., 2008; Cataldo et al., 2009; 

Rodriguez-Alvarez et al., 2009; Larson et al., 2010; 

Rodriguez-Alvarez et al., 2011; Muzalevskiy & Mironov, 

2012; Larson & Small, 2013; Chew et al., 2014; Shulga et al., 

2016; Muzalevsky & Mikhailov, 2018; Muzalevskiy & 

Zeyliger, 2021;  Zeyliger et al., 2021a). This GNSS moisture 

measurement technique is grounded in the correlation 

between the amplitude and phase of descending and 

reflected signals from GNSS systems and the moisture 

content of the upper soil layer (Inman et al., 2002; Larson 

et al., 2010; Overeem et al., 2011; Bogena et al., 2015; Feng 

& Astin, 2015; Kiseleva et al., 2018; Yang et al., 2024).  

 While the GNSS moisture measurement method 

shares certain advantages and disadvantages with 
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previously discussed techniques such as GPR and EMI, it 

also offers two notable benefits. Firstly, it enables nearly 

continuous and universal measurements wherever GNSS 

signals are accessible. Secondly, it allows for the potential 

deployment of corresponding devices on Unmanned Aerial 

Vehicles (UAVs), thereby enhancing flexibility and 

operational efficiency in monitoring soil moisture across 

diverse landscapes. 

 

Thermal Infrared Soil Moisture Measurement 

 In recent years, advancements in thermal infrared (TIR) 

imaging techniques have opened new avenues for 

assessing SM content in agricultural contexts. These 

geophysical methods leverage actual evapotranspiration 

(ETa) from the underlying plant cover layer to evaluate the 

SM availability in the root zone, which is critical for 

understanding crop responses to water stress (Feddes, 

1987; Dobrachev et al., 1988; Golovanov, 1993; Zeyliger et 

al., 2019). Researchers can gain insights into their water 

demand and optimize irrigation practices by analyzing how 

crops react to varying SM content.  

 For the joint interpretation of such data, 

hydrometeorological monitoring data and data from 

remote sensing (RS) are involved (Bastiaanssen et al., 

2005). The subsequent interpretation of this data through 

agrohydrological models enables a more nuanced 

understanding of how SM correlates with the evaporation 

rates of agricultural crops throughout their growing season 

(Zeiliger et al., 2021b). This allows for a precise evaluation 

of SM that is readily available for uptake by plant root 

systems. 

 One of the key advantages of SM measurement using 

TIR data is its focus on quantifying available SM to crops 

rather than merely assessing total SM content within the 

soil profile. This specificity makes the method particularly 

relevant for digital agriculture, facilitating real-time 

decision-making in irrigation management and resource 

allocation (Zeyliger & Ermolaeva, 2013).  

 However, this method has notable limitations 

compared to other noninvasive SM profiling techniques. 

The spatial resolution provided by current TIR sensors is 

generally lower, which may affect the granularity of the 

data collected. Additionally, the effectiveness of these 

measurements can be significantly influenced by weather 

conditions, which can hinder consistent data acquisition 

(Carlson & Petropoulos 2019). 

 In summary, while SM measurement using TIR data 

presents a promising approach for enhancing agricultural 

water management, ongoing improvements in RS 

technology and methodologies are essential to mitigate its 

constraints and fully harness its potential in modern 

farming practices. 

 

Requirements for Root Zone Moisture Data for 

Practical Implementation of Digital Irrigated 

Agriculture Technologies 

 The diversity of soil cover significantly influences the 

spatial variability of hydrochemical and thermal-physical 

regimes within soils (Puzachenko et al., 2002; Zatinatskii et 

al., 2007). This spatial variability in energy and mass 

transfer processes within soil cover can be observed across 

various scales, from the micro-level of pore spaces 

(Voronin, 1986) up to watershed levels (Antipov & Korytny, 

1985; Robinson et al., 2008). At the scale of agricultural 

fields, where natural soil formation factors interact with 

anthropogenic influences, this variability manifests as 

distinct growth patterns in cultivated crops, leading to 

variations in yield (Samsonova et al., 2010; Zhelezova & 

Samsonova, 2014; Zhelezova et al., 2014).  

 To address the spatial heterogeneity of soil cover 

within individual agricultural fields, precision agriculture 

technologies are being developed and implemented 

(Yakushev, 2002, 2007; Samsonova et al., 2010; Zeyliger, 

2010; Belenkov et al., 2011; Yakushev, 2016; Ammar et al., 

2024). These technologies are grounded in research that 

explores the biophysical and chemical processes occurring 

in the subsurface layers of the Earth, aiming to establish 

nature-like anthropogenic systems for efficiently utilizing 

energy, soil, mineral, and water resources. 

 A notable characteristic of many processes occurring 

within the soil cover during the irrigation of crops is the 

intensification of the water transfer process during the 

warm season, along with the associated transport process. 

The dynamics of this intensification are closely related to 

irrigation technologies and their regional and local 

applications.  

 Irrigation of large-scale agricultural plantings is 

recognized as a highly efficient technology, predicated on 

the idealized concept of uniform water distribution across 

the entire non-irrigated area. However, findings from 

spatial-temporal analyses have informed the development 

of a concept centered on non-uniform, spatially 

differentiated irrigation (SDI) within quasi-homogeneous 

contours in irrigated fields Zeyliger, 2010; Zeiliger et al., 

2012). These technologies are grounded in scientific 

research that explores the biophysical and chemical 

processes occurring in the subsurface layers, aiming to 

establish nature-like anthropogenic systems for efficiently 

utilizing energy, soil, mineral, and water resources. 

 According to the technological framework established 

for SDI, each sprinkler's operation mode in the irrigation 

system is managed by an onboard microprocessor. This 

microprocessor utilizes a GNSS antenna to monitor the 

position of sprinklers within the irrigated field. Adherence 

to the specified norms and intensities outlined in the 

technological map, generates commands for the drivers 

responsible for controlling sprinkler operations (Zeyliger, 

2010). This system allows for real-time adjustments to 

irrigation practices based on identified contours. 

 Ultimately, by adjusting irrigation norms and intensity, 

this approach reduces the impediments associated with 

conventional uniform irrigation technology. The benefits 

include: a) increased crop yields; b) enhanced efficiency in 

water use by agricultural crops; c) reduced operational cost 

related to irrigation; d) diminished negative impacts of 

irrigation on land and water, and ecosystems; and e) 

prevention of irrigated land’s degradation. 

 

Integrated Use of Electromagnetic Soil Moisture 

Measurement Methods and Technologies at the Level 

of Irrigated Agricultural Fields 
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 Technological maps for implementing SDI rely on 

spatial data concerning SM in the root zone (Sadler et al., 

2000; Khose & Mailapalli, 2024). Current research focuses 

on acquiring this spatial data through geophysical 

methods, specifically EMI and TIR measurements of soil 

cover. 

 The limitations of utilizing equipped stationary wells 

for SM measurement become apparent during the spatial 

interpretation of data obtained from these wells. 

Depending on the distances between sprinklers, the 

service area for a single irrigation machine can range from 

50 to 200m². Consequently, establishing a sufficiently 

dense monitoring network is often necessary to derive 

reliable SM content values within each service zone based 

on profile measurements. This requirement entails 

significant capital and operational expenditures. 

Furthermore, installing stationary wells within agricultural 

fields complicates farming operations and may lead to 

their decommissioning due to damage (Ratshiedana et al., 

2023). 

 The use of portable invasive SM measuring devices 

currently necessitates considerable time investment and 

substantial manual labor for implementation across 

expansive agricultural fields. The application of robotic 

devices remains limited, primarily due to insufficient 

research aimed at developing designs for such measuring 

instruments, which in turn hampers assessments of their 

reliability and economic viability (Khose & Mailapalli, 

2024). 

 In contrast, non-invasive SM measurement employs 

devices mounted on mobile terrestrial or aerial platforms. 

As these devices traverse or hover above the Earth's 

surface, they capture values related to the electromagnetic 

field and the corresponding coordinates of measurement 

points. The localized data sets generated through this 

process undergo interpretation during subsequent 

processing with specialized computational tools, resulting 

in maps that depict layered SM content. A significant 

advantage of non-invasive EMI methods over invasive 

techniques is their adaptability, allowing for spatial 

resolution adjustments that meet the requirements for 

creating technological maps. However, non-invasive 

methods also present challenges, including the necessity 

for local calibration and difficulties associated with 

maneuvering over crops. 

 Applying methods based on TIR measuring for 

assessing SM in underlying layers demands a 

comprehensive set of ground data, including topography, 

soil cover, sowing dates, growth phases, meteorological 

data, and thermal imaging information of the monitored 

area. Automating these processes is essential to effectively 

implement data collection, processing, and subsequent 

integration into a geospatial database using specialized 

software. 

 Moreover, integrating machine learning algorithms 

into this framework can significantly enhance data 

interpretation and predictive analytics. By leveraging 

machine learning techniques, researchers can improve the 

accuracy of SM content predictions and optimize irrigation 

strategies based on real-time data.  

Conclusion 

 Currently, there are no methodologies capable of 

generating sufficiently comprehensive datasets for the 

effective implementation of irrigation of agrocenosis 

utilizing modern digital technologies. Although significant 

strides have been made in the digital transformation of 

agriculture, yet substantial challenges persist in producing 

adequate datasets for practical applications. Addressing 

these challenges will necessitate ongoing research and 

development efforts to enhance data collection 

technologies and their seamless integration into resource 

management systems. Creating technological maps for 

spatially differentiated irrigation requires a holistic 

approach to soil moisture measurement. By integrating 

invasive methods, such as soil probes, with non-invasive 

techniques like electromagnetic sensors, we can accurately 

assess soil moisture levels across various soil depths. This 

multifaceted strategy is crucial for comprehensively 

understanding the spatial variability of soil moisture 

content within agrocenosis. Enhancing spatial SM data at 

the scale of agricultural fields through the comprehensive 

application of electromagnetic SM measurement methods 

represents an emerging knowledge domain. This area 

demands interdisciplinary research and field studies 

incorporating aerospace monitoring and advanced 

computer modeling techniques.  

 Furthermore, the incorporation of machine learning 

algorithms into this framework can significantly augment 

data interpretation and predictive analytics. This 

integration streamlines decision-making processes and 

promotes a more sustainable approach to water resource 

management in irrigated agriculture. 
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