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ABSTRACT  Article History 

Citrus diseases present significant challenges to global agricultural productivity and 

economic stability, with pathogens such as bacteria, fungi, viruses, and phytoplasmas 

causing severe crop losses. Among these, thrips, California red scale, and sooty mold are 

particularly destructive, highlighting the need for early detection and precise identification 

to manage these threats effectively. This article proposes a machine vision and deep 

learning approach for rapidly classifying citrus diseases. A dataset comprising 900 images of 

three different citrus diseases was captured from Sai Nam Phueng orange orchards in 

Chiang Mai Province, Thailand, and separated into training and validation sets at a ratio of 

80:20. Convolutional Neural Networks (CNNs) were constructed using MobileNetV2 for pre-

training and achieved 97.22% accuracy in disease classification, demonstrating its potential 

to enhance disease prediction and prevention within the citrus industry. The model’s 

performance was assessed through confusion matrices, revealing robust classification 

results consistent with existing studies. 
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INTRODUCTION 

 

 Citrus fruits hold substantial commercial significance 

in Thailand due to their significant capacity to generate 

income for farmers. Among the varieties cultivated, 

tangerines are especially prominent, with the northern 

region accounting for the largest planted area (Somsri & 

Vichitrananda, 2007; Maciel et al., 2023). In 2020, Chiang 

Mai Province alone boasted an extensive 31,685 rai 

dedicated to orange cultivation, yielding an impressive 

2,820 kg/rai. Notably, the Sai Nam Phueng variety is 

another popular type of orange extensively cultivated by 

farmers in the Fang District of Chiang Mai Province. This 

variety is favored for its juicy, flavorful flesh, appealing 

yellow skin, and high consumer demand. To consistently 

produce high-quality oranges with desirable taste and 

quality, several critical factors must be considered, 

including soil nutrient levels and climatic conditions. 

However, rising production costs, particularly those related 

to chemical fertilizers, have significantly increased the 

financial burden on farmers. Additionally, fluctuating 

weather patterns have exacerbated the occurrence of 

various diseases in orange plantations (Dala-Paula et al., 

2019; Taylor et al., 2019; Pathak et al., 2021). As a result, 

the quality of the produce often suffers, leading to 

inconsistencies in sweetness and appearance, ultimately 

diminishing its market value. 

 Citrus diseases have a considerable impact on the 

quantity and quality of citrus fruits worldwide, severely 

affecting agricultural output and economic stability (Sun et 

al., 2019; Urbaneja et al., 2020; Dhiman et al., 2022; Naqvi 

et al., 2022). These diseases, attributed to a diverse array of 

pathogens, including bacteria, fungi, viruses, and 

phytoplasmas,  are  responsible for severe economic losses 
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in the citrus industry. Among these, Huanglongbing (HLB), 

also known as citrus greening, is one of the most 

destructive diseases. It is caused by the bacterium 

Candidatus Liberibacter asiaticus and is primarily spread by 

the Asian citrus psyllid (Diaphorina citri) (Li et al., 2021). 

HLB inflicts extensive damage on the plant’s vascular 

system, leading to symptoms such as leaf chlorosis, 

stunted growth and ultimately, tree mortality (Dala-Paula 

et al., 2019). Another critical disease affecting citrus crops 

is citrus canker, caused by the bacterium Xanthomonas 

axonopodis pv. citri, manifesting as lesions on leaves, 

stems, and fruits, resulting in premature fruit drops and 

decreased marketability of the produce. Additionally, 

Phytophthora Root Rot and Gummosis, caused by 

Phytophthora species, target the root system and trunk, 

compromising nutrient uptake and weakening the tree’s 

structural integrity (Van den Berg et al., 2021; Bouqellah et 

al., 2024). Early detection and correct identification of these 

citrus diseases are critical to mitigating their impact. 

Traditionally, plant diseases are diagnosed in agricultural 

laboratories using specialized procedures to detect specific 

pathogens (Utpal et al., 2020; Zhang et al., 2020; Buja et al., 

2021). In some cases, plant pathologists support farmers in 

diagnosing problems based on visual indications. However, 

while this procedure is useful, it is primarily dependent on 

the pathologist’s skill and may not always produce 

accurate or timely results, especially in the early stages of 

illness onset. Consequently, to improve the efficiency of 

citrus disease management, methods for identifying citrus 

leaf diseases must be developed and implemented in a 

fast, intelligent, and effective manner. 

 Deep learning has emerged as a useful tool across a 

range of fields, including agriculture, where it is 

increasingly used to identify and classify plant diseases 

(Appalanaidu & Kumaravelan, 2021; Li et al., 2021; Wang et 

al., 2022; Jafar et al., 2024). Among the various deep 

learning techniques, convolutional neural networks (CNNs) 

have been recognized as being particularly effective for 

these tasks. Notable CNN architectures, such as MobileNet, 

have been widely used to detect and classify plant diseases 

(Saleem et al., 2020; Hassan et al., 2021; Elfatimi et al., 

2022). Furthermore, numerous researchers have applied 

deep learning models to the specific challenge of 

identifying and classifying citrus diseases. Noteworthy 

contributions in this area include the work of Rehman et al. 

(2022), Barman and Ridip (2021), and Xiaoling et al. (2016), 

who have demonstrated the efficacy of deep learning 

approaches in enhancing the accuracy and efficiency of 

citrus disease management. This study aims to utilize 

CNNs for the accurate identification and classification of 

citrus diseases, with the goal of supporting early detection 

and effective management. The findings are expected to 

provide a foundation for mobile applications that enable 

real-time disease analysis in the field. 

 

MATERIALS & METHODS 

 

Preparation of Citrus Disease Images 

 This study used a dataset comprising 900 images of 

citrus diseases collected from the Sai Nam Phueng orange 

orchards in Fang District, Chiang Mai Province. The images 

were captured using an iPhone 13 at a resolution of 3024 

× 4032 pixels and saved in JPEG format. The dataset 

includes three different citrus diseases: thrips, California 

red scale, and sooty mold (Fig. 1). To aid the development 

and evaluation of an image classification model designed 

to distinguish between these citrus disease types, the 

dataset was divided into training and validation sets at a 

ratio of 80:20. 

 

 
              A                               B                              C  

 

Fig. 1: Images of citrus disease (A) thrips, (B) California red scale, and (C) 

sooty mold. 

 

Image Preprocessing and Data Augmentation 

 To mitigate overfitting and enhance the accuracy of 

CNNs, the availability of extensive training datasets is 

crucial. Consequently, data augmentation techniques are 

commonly employed to expand and diversify the dataset 

(Shorten & Khoshgoftaar, 2019; Mumuni & Mumuni, 2022; 

Santos & Papa, 2022; Alomar et al., 2023). In this study, the 

training images were subjected to random rotations, 

horizontal and vertical flips, and normalization to account 

for the variability encountered in real-world conditions. 

These augmented images were then included in the 

training process alongside the original sample images, 

thereby improving the model’s classification precision and 

robustness (Fig. 2). 

 

Convolutional Neural Networks 

 Deep learning, an area of machine learning, has 

shown significant effectiveness in image classification tasks 

due to its ability to autonomously extract high-

dimensional and abstract features from training samples 

using neural networks. This study describes a deep 

learning methodology for classifying citrus diseases that 

uses CNNs and is implemented using the TensorFlow 

framework in a Python development environment. The 

neural network architecture employed in this research is 

MobileNetV2 for pre-training, chosen for its efficiency and 

effectiveness in resource-limited settings. This model 

consists of six layers: five depth-wise separable 

convolutional layers that minimize the computational cost 

and a final output layer optimized for precise citrus disease 

classification. The ReLU serves as the activation function, 

complemented by 2×2 max pooling. The output from the 

final layer is processed using the softmax function to 

generate probability distributions for predicting three 

distinct types of citrus diseases. The model underwent 

training across 30 epochs. Fig. 3 provides an in-depth 

illustration of the CNN architecture used in this study. 
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Fig. 2: Data enhancement: (a) 

Original, (b) Flip vertical, (c) Flip 

horizontal, and (d) Random 

rotation. 

  

Fig. 3: Process of Convolutional 

Neural Networks and the 

classification of citrus disease. 

 

Performance Evaluation 

 In this study, a confusion matrix was employed to 

visualize the performance of the CNN model. The 

confusion matrix compares the samples’ actual classes to 

those predicted by the CNN classifier, capturing four 

primary metrics: true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN). Specifically, TP 

and TN indicate correct citrus disease identification, 

whereas FP and FN indicate incorrect classification 

(Monaghan et al., 2021; Chicco & Jurman, 2023). The 

model’s performance was assessed using several statistical 

measures derived from the confusion matrix: accuracy, 

precision, sensitivity, and F1-score. These metrics were 

calculated using images from the test set, accompanied by 

labels not utilized during training. The performance 

evaluation formulas are presented in Table 1. 

 
Table 1: Performance evaluation to measure the performance of the CNN model 

Metrics Formula Evaluation Focus 

Accuracy  TP TN

TP FP FN TN



    

The sum of correct predictions 

is divided by the total number 

of predictions. 

Precision  TP

TP FP  

The high score indicates low 

false positives, resulting in 

higher classification. 

Sensitivity   TP

TP FN  

This represents the ability of 

the model to identify instances 

of specific classes. 

F1-score  2 precision sensitivity

precision sensitivity

 


 

Its high score indicates that 

the model classifies accurately. 

 

RESULTS & Discussion 

 

 The performance of the model was evaluated by 

monitoring the accuracy and loss metrics across training 

epochs. Fig. 4 presents the trends in accuracy and loss for 

both the training and validation datasets over the course 

of training. During the initial phase, spanning epochs 1 to 

10, there was a notable decrease in loss values, coinciding 

with a significant improvement in accuracy. These 

observations indicate effective learning during the early 

training stages. By the end of the training process, the 

CNN models demonstrated a high level of performance, 

achieving training accuracy exceeding 92% (0.92) and 

maintaining loss values consistently below 0.15. These 

results underscore the model’s robustness and reliability in 

learning from the data (Allal et al., 2024; Lin, 2024). 

Furthermore, the models exhibited convergence by 

approximately the 15 epoch, suggesting that the training 

process was efficient and reached stability within a 

relatively short time frame. Such performance highlights 

the efficacy of the chosen architecture and optimization 

strategy in facilitating rapid and reliable convergence to 

optimal solutions. 

 After completing the training phase, the model’s 

performance was systematically evaluated using a 

confusion matrix, providing a detailed breakdown of 

classification outcomes based on true positives (TP), true 

negatives (TN), false positives (FP), and false negatives 

(FN). This approach allows for a comprehensive 

understanding of the model’s accuracy and potential areas 

of misclassification. Fig. 5 presents two versions of the 

confusion matrix: an unnormalized matrix and a 

normalized matrix. 

 In the unnormalized confusion matrix, 57 images of 

thrips were correctly classified as belonging to the thrip 

category, demonstrating the model’s ability to accurately 

identify the majority of instances. However, minor 

misclassifications were observed: two thrip images were 

incorrectly  identified  as  belonging  to  the  California  red  
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Fig. 4: Training and validation 

accuracy, along with training 

and validation loss. 

 

 
 

  

Fig. 5: Confusion Matrix (a) 

without normalization and (b )

with normalization. 

 

 

scale category and one thrip image was misclassified as 

sooty mold. For the California red scale category, the model 

achieved flawless classification, with all 60 images being 

accurately identified as the California red scale. Similarly, for 

the sooty mold category, there were minor misclassifications: 

one image was incorrectly classified as thrips and another 

was mistakenly labeled California red scale. 

 The normalized confusion matrix provides an 

additional layer of insight by expressing the classification 

outcomes as proportions or percentages of the total 

predictions. This normalization facilitates easier 

comparison across categories with varying sample sizes. As 

illustrated, the model achieved a 95% correct classification 

rate for the thrip category, a perfect 100% classification 

accuracy for the California red scale, and a 96% correct 

classification rate for sooty mold. These results highlight 

the model’s high level of accuracy and its ability to 

generalize across diverse categories. 

 To further quantify the model’s performance, several 

evaluation metrics derived from the confusion matrix are 

presented in Table 2. These include accuracy, precision, 

sensitivity (also known as recall), and F1-score. Accuracy 

measures the overall proportion of correct predictions out 

of all the predictions made by the model. Precision 

assesses the proportion of true positive predictions relative 

to all positive predictions, reflecting the model’s ability to 

avoid false positives. Sensitivity evaluates the proportion of 

true positives relative to the actual number of positive 

instances, providing insight into the model’s capability to 

detect true cases without missing any. Lastly, the F1-score, 

the harmonic mean of precision and sensitivity, serves as a 

balanced metric that considers both false positives and 

false negatives. 

 
Table 2: Classification results for the CNN model 

Accuracy (%) Precision (%) Sensitivity (%) F1-Score (%) 

97.22 97.27 97.22 97.22 

 

 The mean values for these metrics, as displayed in 

Table 2, further reinforce the model’s robust classification 

capabilities. The high mean accuracy suggests that the 

model reliably identifies most instances correctly, while the 

strong precision and sensitivity values indicate it performs 

well in both identifying true positives and minimizing false 

positives and negatives. The F1-score, being consistently 

high, confirms that the model achieves a balanced 

performance across all categories. 

 Overall, the results from the confusion matrix and the 

associated performance metrics demonstrate the efficacy 

of the model in accurately classifying the given categories. 

The minimal misclassification rates, particularly in the thrip 

and sooty mold categories, indicate areas for potential 

refinement but do not detract significantly from the 

model’s overall performance. The perfect classification of 

the California red scale category highlights the strength of 

the model in handling certain categories with absolute 

precision. These findings underscore the utility of the 

developed model for practical applications, where accurate 

and reliable classification is essential. 

 Future improvements could focus on addressing the 

misclassifications observed in the thrip and sooty mold 

categories. This may involve enhancing the feature 

extraction process or incorporating additional training data 
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to improve the model’s discriminative power. Moreover, 

further analysis of the misclassified instances could provide 

valuable insights into specific patterns or characteristics 

that might have led to errors. Such refinements would not 

only enhance the model’s overall accuracy but also 

contribute to its robustness in real-world scenarios where 

diverse and challenging datasets are often encountered. 

 The findings of this study align closely with prior 

research, notably those conducted by Gandhi et al. (2018) 

and Picon et al. (2019), who utilized MobileNet CNN to 

detect banana and tomato diseases. Their respective 

models achieved high accuracies of 92% and 96%, 

underscoring the robustness of MobileNet architectures 

in plant disease detection. Additionally, previous studies 

have explored the use of MobileNet CNNs specifically for 

citrus disease classification. For instance, Xing et al. 

(2019) employed MobileNetV1 and MobileNetV2 to 

classify seven types of citrus diseases, achieving testing 

accuracies of 85.04% and 87.82%, respectively. When 

compared to the current research, the classification 

accuracy reported in this study exceeds that of Xing et al. 

(2019), demonstrating a performance improvement in the 

detection of citrus diseases. 

 The present study also surpasses the results of Utpal 

et al. (2020), who employed MobileNetV2 to classify three 

types of citrus diseases, reporting a classification accuracy 

of 92%. This comparison further emphasizes the 

advancements made in the current work. Beyond 

MobileNet CNN, other CNN architectures have been 

applied to citrus disease classification with similarly 

competitive outcomes. For example, Yadav et al. (2024) 

utilized the VGG16 architecture, combined with 

hyperspectral imaging, to classify Citrus Black Spot (CBS) 

and citrus canker diseases. This approach yielded an 

overall accuracy of 93%, showcasing the potential of 

integrating advanced imaging techniques with CNN 

models for enhanced disease classification. 

 Moreover, Jasim et al. (2020) developed a CNN model 

tailored to classify seven distinct classes of citrus diseases: 

anthracnose, brown rot, CBS, citrus canker, citrus scab, 

melanose and sooty mold. Their model achieved an overall 

accuracy of 88%, which, while significant, is lower than the 

results reported in the current research. These findings 

illustrate the continuous evolution and refinement of CNN-

based methodologies in agricultural applications. 

 Vinay and Poonam (2020) explored the classification 

of oranges into two categories: “good” and “damaged” 

using a dense CNN architecture. They tested two distinct 

preprocessing strategies: one without image preprocessing 

and augmentation, resulting in a classification accuracy of 

67%, and another with preprocessing and augmentation, 

achieving a substantially improved accuracy of 89.1%. 

These results highlight the critical role of preprocessing 

and data augmentation techniques in enhancing CNN 

performance, particularly in scenarios involving complex or 

imbalanced datasets. 

 Collectively, this study and the aforementioned 

research highlight the efficacy of CNN-based models in 

the classification of citrus diseases. The ability of CNNs to 

learn intricate patterns from visual data, such as symptoms 

of plant diseases, makes them invaluable tools in precision 

agriculture. The higher classification accuracies observed in 

this study compared to earlier works underscore the 

impact of architectural improvements, optimized 

hyperparameter configurations, and potentially larger or 

more diverse datasets. 

 Future research could build upon these findings by 

integrating complementary techniques, such as 

hyperspectral imaging, transfer learning, or ensemble 

modeling, to further enhance the robustness and 

generalizability of citrus disease classification systems. 

Additionally, expanding the scope of the study to include 

real-time detection capabilities in field conditions would 

be a valuable direction, ensuring that these models could 

address the practical challenges faced by farmers and 

agricultural stakeholders. Ultimately, the collective body of 

research reaffirms the transformative potential of CNNs in 

revolutionizing plant disease management, paving the way 

for more sustainable and efficient agricultural practices. 

 

Conclusion 

 This study successfully demonstrated the application 

of deep learning for the classification of citrus diseases 

prevalent in Thai orchards. The model achieved an 

accuracy rate of 97.22%, underscoring its potential for 

improving disease detection and management in the citrus 

industry. The integration of data augmentation techniques 

further improved the model’s robustness, ensuring its 

effectiveness in real-world scenarios. These findings are 

consistent with previous research utilizing CNNs for plant 

disease identification, affirming the efficacy of deep 

learning in agricultural applications. The results of this 

research contribute significantly to the field by offering a 

practical tool for citrus disease management, which could 

be further developed into mobile applications for real-time 

disease analysis by farmers. Future work could explore the 

expansion of the dataset to include a broader range of 

diseases and the implementation of more advanced deep 

learning models to increase classification accuracy. 
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