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ABSTRACT  Article History 

Hybridization is an important tool in aquaculture to combine the desirable traits of parental 

fish stocks. This process produces offspring with disease resistance, improved feed conversion 

efficiency, accelerated growth, environmental resilience and superior flesh quality. All these 

traits are economically beneficial and can fulfill large demands in the industry without 

depleting wild stocks. Various techniques have been used to hybridize fish, including artificial 

insemination, selective mating and genetic manipulation. Molecular methods like gene editing 

and in-vitro fertilization can ensure speedy production of hybrid stocks with precise traits, but 

the processes should be supported by impact studies to provide a comprehensive 

understanding of hybridization outcomes. This review explores the diverse methods of fish 

hybridization in aquaculture, highlighting examples of their genetic and physiological impacts 

on wild fish populations, besides their ecological and evolutionary consequences. It also 

explores ethical considerations and public perception, particularly gene modification, along 

with an analysis of regulatory and policy frameworks. As global demand for food protein 

continues to rise, aquaculture is increasingly recognized as a sustainable solution to meet the 

demand. The increasing potential of hybrid species in enhancing aquaculture production 

underscores the importance of developing efficient and sustainable industry practices.  
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INTRODUCTION 

 

 Fish hybridization has emerged as a pivotal strategy in 

aquaculture, enabling the production of new species and 

enhancing genetic diversity. By combining the desirable 

traits of parent species, hybridization creates offspring with 

higher commercial value and better chance of survival in 

controlled environments (Xu et al., 2015; Nguyen et al., 

2022), aligning with the primary goal of aquaculture, that is 

to produce high-quality fish stocks in large quantities to 

meet market demand and maximize profits. The genetic 

diversity of fish has expanded alongside the growth of 

aquaculture, driven by both spontaneous occurrences and 

human intervention. Hybridization can be achieved 

through artificial insemination, selective mating and 

genetic modification in laboratory settings. The 

overarching goal is to leverage the genetic diversity of 

various fish species to address ecological and evolutionary 

questions, manage invasive species, conduct genetic 

research, conserve endangered species and enhance 

productivity (Hubbs, 1955; Bartley et al., 2001; Martsikalis 

et al., 2019). 

 

Scope of Review 

 The detection and study of hybridization events in fish 

populations often utilize molecular techniques that yield 

rapid and accurate results. Hybridization events are often 

detected in fish populations through conservation efforts, 

and the ecosystem dynamics are investigated using a 

combination of morphological, genetic, behavioral and 

ecological approaches. Thus, the genetic and physiological 

repercussions   of  hybridization,  as  well  as  its  ecological 
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ramifications, role in species conservation and genetic 

introgression are reviewed and discussed. Additionally, the 

technological challenges, regulatory and policy 

considerations and ethical concerns are also discussed. 

 

Objectives 

 Hybrid stocks, resulting from the cross-breeding of 

different fish species, play a crucial role in the global 

expansion of aquaculture production. With the objective of 

improving offspring quality, aqua culturists are increasingly 

encouraged to explore and generate fish hybrids. This 

review aims to provide a comprehensive analysis of the 

subject, focusing on its genetic, physiological and 

ecological implications. It seeks to examine the role of 

hybridization in species conservation, genetic introgression 

and ecosystem dynamics, besides addressing the 

challenges, regulatory frameworks and ethical concerns 

associated with hybridization.  

 

Fish Hybridization Techniques 

Artificial Hybridization 

 Artificial hybridization involves manipulating the 

breeding of fish within or between species through 

interventional methods. Parental fish with specific desirable 

traits are preselected, and their offspring are screened for 

culture in various environments (Bartley et al., 2001; 

Elaswad & Dunham, 2018). 

 

Selective Breeding (Traditional) 

 Selective breeding aims to improve key traits in fish, 

such as feed conversion efficiency, disease resistance, 

environmental tolerance and growth rate. The traditional 

methods like population selection, pedigree selection, 

parental selection and integrated selection have been used 

to enhance these traits by producing natural offspring with 

better genes (Burdon & Klápště, 2019; Rutkoski et al., 2022; 

Seidy et al., 2023). The development of molecular markers 

has advanced breeding approaches, such as marker-

assisted selection (MAS) and genomic selection, improving 

the efficiency of selecting specific traits. Successful 

examples of selective breeding include rainbow trout 

(Onchorhyncus mykiss) (Wiens et al., 2018), silver carp 

(Hypophthalmichthys molitrix) (Gheyas et al., 2009) and 

channel catfish (Ictalurus punctutatus) (Rezk et al., 2003; 

Minh et al., 2022) with molecular markers aiding in the 

identification of genes related to growth, disease 

resistance and other beneficial traits (Liu and Cordes, 

2004). Although the identification of desirable offspring is 

often a tedious process, many aquaculture farmers are 

opting to use selectively bred fish stocks to maximize yield 

and profits (Ranjan et al., 2018; Szabóa et al., 2019).  

 

Spawn Induction 

 Spawn induction allows the synchronization and 

control of fish reproduction. This method involves 

hormonal stimulation to induce gamete maturation and 

ovulation, and its success depends on hormone dosage, 

fish maturity and environmental conditions (water 

temperature, current and rain). Both natural and synthetic 

hormones, such as gonadotropin-releasing hormone 

analogue (GnRHa) and pimozide (antidopaminergic 

medication) have been used successfully in various species, 

including the walking catfish (Clarias batrachus) (Basu et 

al., 2000; Sahoo et al., 2008), Asian stinging catfish 

(Heteropneustes fossilis) (Alok et al., 1993; Alok et al., 1994) 

and snakehead fish (Chana spp.) (Zohar & Mylonas, 2001). 

 

Technological Advances in Gene Manipulation  

 Gene-editing technology has provided researchers 

with an opportunity to control hybridization up to the 

genetic level (Hallerman et al., 2023). When combined with 

advancements in in-vitro fertilization, the efficiency and 

success rates of producing genetically modified fish stocks 

could be increased. The integration of these technologies 

into fish breeding programs promises to accelerate the 

development of new, high-performance hybrids that can 

meet the demands of modern aquaculture (Chen et al., 

2014; Wang et al., 2019a). 

 CRISPR-Cas9 is a precise genome-editing tool that has 

revolutionized genetic research by allowing targeted 

modifications in the organisms’ genome. This technology 

allows the introduction of new genes to enhance desirable 

traits (Kim et al., 2024) or induce targeted mutations to 

knock out specific genes to establish their genotype-

phenotype relationships (Sifuentes-Romero et al., 2023). 

Targeted genomes may be edited with high efficiency, as 

demonstrated in mutational experiments of zebrafish and 

medaka, achieving gene knockout rates of up to 94% 

without detectable off-target effects (Zheng et al., 2023; 

Dorner et al., 2024). When integrated with traditional 

breeding methods, CRISPR-Cas9 can enhance aquaculture 

traits like the successful modification of growth-associated 

genes in red sea bream and channel catfish (Aich et al., 

2023). In addition to growth enhancement, CRISPR-Cas9 

can also precisely insert genes related to disease 

resistance, allowing for the creation of hybrids that 

withstand various pathogens. For example, the alligator 

cathelicidin gene (which transcribes and translates a host 

defense peptide with antimicrobial activity) has been 

introduced in channel catfish stocks to enhance their 

survival against infections and reduce reliance on chemical 

antibiotics (Wang et al., 2023; Wang et al., 2024).  

 The CRISPR/Cas9 gene-editing technology has also 

been used in Nile tilapia (Oreochromis niloticus) to knock 

out selected genes to determine their functions in vivo. 

When genes like nanos2, nanos3, dmrt1 and foxl2 were 

knocked out, it has been observed that the tilapia would 

subsequently develop germ cell-deficient gonads and 

undergo masculinization (Li et al., 2014). These 

observations were validated using immunohistochemistry 

and hormonal assay, where the knocked-out gene proteins 

were not detected. Therefore, such functional genes would 

be important to produce hybrid fish that are fertile and 

easy to breed in quantity.  

 The development of tools like the Mongrail program, 

which assists in detecting and analyzing hybridization 

events (model linkage and recombination in genomic 

datasets) (Chakraborty & Rannala 2023), complements 

CRISPR-Cas9 by enabling researchers to better understand 

genetic variations and introgression patterns in hybrid fish 
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populations, thereby facilitating more accurate studies on 

the consequences of hybridization. 

 Concurrently, next-generation sequencing (NGS) 

technologies have revolutionized the identification of 

molecular markers critical for phylogenetic studies. For 

instance, tools like GeneMiner leverage advanced assembly 

techniques to mine these markers from vast genomic data, 

even in the absence of comprehensive reference genomes 

for non-model organisms (Xie et al., 2024). The integration 

of CRISPR-Cas9 and NGS in hybrid fish studies also offers 

significant advantages over traditional methods, such as 

zinc-finger nucleases or TALENs, which often present 

complex designs and delivery challenges (Aich et al., 2023). 

Complementary NGS advancements can provide high-

throughput analysis of genetic variations, streamlining the 

identification of hybridization markers, advancing the 

efficiency and accuracy of genetic analysis in fish hybrids, 

overcoming the limitations of labor-intensive genotyping, 

and significantly enhancing our understanding of genetic 

traits and evolutionary biology (Mattiello et al., 2022; 

Dorner et al., 2024). 

 

Natural Hybridization 

 Natural hybridization involves the cross-breeding of 

genetically distinct groups or individuals within or between 

species, often occurring in environments where multiple 

fish species coexist. 

 Natural hybridization is more prevalent in fish than 

other vertebrates, with significant occurrences 

documented in both marine and freshwater environments 

(Hubbs, 1955; Campton, 1987). This process plays a critical 

role in evolutionary innovation, allowing the transfer of 

genetic material between species through backcrossing 

and genetic introgression (Arnold & Martin, 2009; Meier et 

al., 2017; Bradbury et al., 2022). 

 

Environmental Factors Influencing Natural 

Hybridization 

 Environmental factors, such as external fertilization, 

species abundance, competition for spawning habitats and 

habitat complexity can influence natural hybridization. Fish 

often respond to environmental cues like photoperiod, 

water temperature and lunar cycles (Sims et al., 2004; 

Katselis et al., 2007; Forsythe et al., 2012; Perkin et al., 2015; 

Tibblin et al., 2016; Šmejkal et al., 2018; de Magalhães 

Lopes et al., 2018) during their reproductive migrations, 

with changes in these factors potentially leading to 

hybridization events. The presence of hybrids can also alter 

species interactions, affecting growth, survival and 

reproductive success. This can be seen in certain fish 

species recognized for their distinct population biology, 

where individuals migrate to specific marine spawning 

areas and engage in panmictic reproduction (Jacobsen et 

al., 2014). An illustration of this phenomenon is observed 

in the Atlantic herring (Clupea harengus) (Ruzzante et al., 

2006; Mueller et al., 2023) and anchovies (Engraulidae 

family) (Catanese et al., 2017; Catanese et al., 2020). 

Consequently, variations in habitat accessibility, water flow 

patterns and environmental influences can also affect the 

extent of species habitat overlapping. 

Case Studies of Successful Projects 

 There are many cases of successful fish hybridization 

in aquaculture. The projects have demonstrated significant 

advancements in enhancing food security and productivity. 

For example, the hybridization of silver carp and channel 

catfish has led to the development of progenies that 

exhibit rapid growth, improved feed conversion, and 

enhanced disease resistance (Rezk et al., 2003; Gheyas et 

al., 2009; Minh et al., 2022). Another project is the 

development of hybrid groupers (Epinephelus 

fuscoguttatus × Giant Grouper E. lanceolatus), which 

combined the fast growth rates of one species with 

superior flesh quality of another (Ch’ng & Senoo, 2008), 

showcasing the benefits of hybrid vigor. These case studies 

demonstrated the practical benefits of hybridization in 

achieving specific aquaculture goals, providing valuable 

insights into the potential of hybrid species to meet 

commercial and environmental objectives. 

 Other notable examples include the production of 

hybrid tilapia in Malawi, Africa, where the small-scale 

aquaculture project has thrived through locally adapted 

practices (Munthali et al., 2022). This project also highlights 

the importance of integrating social and biophysical 

research to optimize aquaculture systems. Meanwhile, in 

the United States (US), the hybridization of white bass 

(Morone chrysops) and striped bass (Morone saxatilis) has 

led to the creation of hybrid striped bass, a species that is 

valued for its rapid growth, hardiness and adaptability to 

different environmental conditions (Andersen et al., 2021). 

This hybrid has become a cornerstone of the aquaculture 

industry in the southern US, particularly in states like North 

Carolina and Mississippi, where it is farmed extensively for 

food and recreational fishing.  

 In Scandinavia, particularly Norway and Sweden, the 

hybridization of Atlantic salmon (Salmo salar) and brown 

trout (Salmo trutta) has been explored. Although hybrid 

viability can vary, some have shown promising traits, such 

as enhanced resistance to disease and better adaptation to 

fluctuating water temperatures (Adams et al., 2023). These 

hybrids are being studied for their potential to improve the 

sustainability and productivity of salmonid aquaculture, 

which is a significant industry in this region. The research 

on salmon-trout hybrids may be seen as a solution to the 

challenges posed by climate change in cold-water 

aquaculture as they are more robust to temperature change. 

 Other examples of commercially important aquaculture 

hybrids include the channel x blue hybrid catfish (Arias et 

al., 2012; Torrans and Ott, 2018) and various sturgeon 

crosses like the Bester (Huso huso x Acipenser ruthenus) 

(Bronzi et al., 2011). In China, the aquaculture industry is 

mostly focused on tilapia and carp hybrids (mainly between 

subspecies of Cyprinus carpio and Carassius carassiusare), 

which suit the local palate (Zhou and Gui, 2018). 

 These case studies from various regions around the 

world highlight the versatility and global applicability of 

fish hybridization techniques (Table 1). By tailoring 

hybridization programs to the specific environmental and 

economic demand of each region, these techniques can 

play a crucial role to enhance aquaculture production, 

support food security and promote sustainable practices in 

the face of global challenges. 

https://www.sciencedirect.com/science/article/pii/S0044848623003095#bb0035
https://www.sciencedirect.com/science/article/pii/S0044848623003095#bb0035
https://www.sciencedirect.com/science/article/pii/S0044848623003095#bb0420
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/huso-huso
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/acipenser
https://www.sciencedirect.com/science/article/pii/S0044848623003095#bb0095
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tilapia
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/carp
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/mirror-carp
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/crucian-carp
https://www.sciencedirect.com/science/article/pii/S0044848623003095#bb0450
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Table 1: Summary of Some Successful Fish Hybridization in Aquaculture 

Hybrid Species Region Advantages References 

Silver Carp & Channel Catfish Global (Alabama, USA, 

Parbatipur, Bangladesh, 

Mekong Delta, Vietnam) 

Rapid growth, improved feed conversion, enhanced resistance disease Rezk et al. (2003); Gheyas et 

al. (2009); Minh et al. (2022) 

Hybrid Groupers (E. 

fuscoguttatus × E. lanceolatus) 

Southeast Asia Fast growth, superior flesh quality Ch’ng & Senoo (2008) 

Hybrid Tilapia Malawi, Africa Adapted to local practices, highlights integration of social and 

biophysical research 

Munthali et al. (2022) 

Hybrid Striped Bass (White 

Bass × Striped Bass) 

United States (US) Rapid growth, hardiness, adaptability to diverse environments; 

cornerstone for food and recreational fishing 

Andersen et al. (2021) 

Atlantic Salmon × Brown 

Trout 

Scandinavia (Norway, 

Sweden) 

Enhanced disease resistance, adaptability to temperature fluctuations; 

potential for sustainable salmonid aquaculture under climate change 

Adams et al. (2023) 

Channel × Blue Catfish United States (US) Increased production efficiency Arias et al. (2012); Torrans & 

Ott (2018) 

Bester (Huso huso × Acipenser 

ruthenus) 

Europe High-value sturgeon hybrid used in caviar production Bronzi et al. (2011) 

Tilapia and Carp Hybrids China Suited to local palate and market demand Zhou & Gui (2018) 

 

Consequences of Hybridization 

Genetic Introgression 

 Genetic introgression refers to the exchange of genes 

between species or populations and their subsequent 

backcrossing (Arnold, 1997). While this process can 

introduce gene novelty and provide ecological and 

evolutionary advantages, it can also negatively impact 

parental populations, potentially leading to a loss of 

unique genetic diversity and complicating conservation 

efforts (Shechonge et al., 2018; Ottenburghs, 2020; Tesfaye 

et al., 2021). 

 Hata et al. (2019) recently reported the threat of 

genetic introgression to native species of bitterling fish 

(Tanakia (T.) lanceolata) in Matsuyama, Japan, which gave 

rise to invasive hybrids. This was a result of the 

introduction of another bitterling species (Tanakia 

limbate) from West Kyushu into local streams. Most of 

the samples that the authors obtained were hybrids that 

covered the entire range of T. lanceolata habitats, 

causing them to conclude that was the result of niche 

replacement in local streams.  

 Depending on the degree of hybridization and 

subsequent gene flow, introgression can blur boundaries 

between species, promote gene mixing or create hybrid 

zones, where genetically distinct populations meet. Genes 

that interact extensively with other genes, or involved in 

the “evolutionary arms race”, are particularly prone to 

causing hybrid incompatibilities, as seen in the three-spine 

stickleback fish (Thompson et al., 2022). Dobzhansky 

(1937) and Muller (1942) suggested that hybrid 

incompatibility involved multiple genetic changes. They 

developed a model indicating that unviability could arise 

from hybrids being heterozygous for different alleles at a 

single locus (underdominance). An example is the platyfish 

hybrid (Xiphophorus maculatus) and green swordtail 

(Xiphophorus helleri) (Coyne & Orr, 2004). Platyfish with 

spots have an X-linked gene for spots and an autosomal 

repressor that regulates the gene, while green swordtails 

lacked both gene and repressor. In some backcross hybrids 

of these species, those receiving the spot-producing gene 

without the repressor will develop enlarged spots that turn 

into malignant tumors. The spot-producing gene is a 

duplicated copy of the Xiphophorus melanoma receptor 

kinase (Xmrk), specifically Xmrk-2, while the Xmrk-1 gene, 

present in both species, does not cause spots. 

Hybrid Vigor (Heterosis) 

 Hybrid vigor, or heterosis, can enhance genetic 

diversity and lead to superior performance and fitness in 

hybrid offspring. This phenomenon is particularly 

beneficial in aquaculture. However, the extent of heterosis 

varies, with some hybrids showing less pronounced 

benefits, particularly in unpredictable or changing 

environments (Ellison & Burton, 2008a; Chen et al., 2018; 

Liu, 2022; Wang et al., 2023). 

 A number of studies reported smaller heterosis 

effects, which mostly did not exceed the best parent; for 

example, the hybrid catfish cultured in Thailand is a cross 

between the African catfish (Clarias (C.) gariepinus) and the 

Thai catfish (C. macrocephalus) (Nwadukwe, 1995). This 

hybrid combined the fast growth rate of the African catfish 

with the desirable flesh characteristics of the Thai catfish. 

The resulting product is a fast-growing offspring with 

acceptable flesh taste to Thai consumers, even though it 

does not grow as quickly as the pure African catfish. It is 

reasonably common for reciprocal hybrids to have 

different performance (Deng et al., 2010) and it is generally 

accepted that heterosis shows genetic correlations 

between pure species and hybrid results that are favorable 

in all traits (Kube et al., 2024). 

 

Loss of Genetic Diversity (Genetic Swamping) 

 Hybridization can lead to loss of genetic diversity, 

particularly when one population contributes more 

genetic material to another, resulting in genetic 

swamping (Sundqvist et al., 2016). This process can erode 

unique genes that contain traits for local adaptation, 

potentially reducing the adaptive capacity of hybrid 

populations (Roberts et al., 2010; Waples et al., 2012; 

Parvez et al., 2022). The numerically dominating or 

asymmetrical introgression may cause unique alleles or 

genetic variations that are previously present in one 

group to be diluted or eliminated due to hybridization 

and gene flow (Roberts et al. 2010). Genetic introgression 

can result in the swamping of the gene pool of one 

population with another population or species when 

hybrid individuals outperform purebreds in terms of 

fitness or reproductive success (Crozier, 2000). This may 

also lead to the loss of alleles that are locally adapted or 

the introduction of alleles through hybridization that 

replace native genetic diversity. 
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 Aside from that, genetic introgression may 

disproportionately affect rare alleles or low-frequency 

variants in the receiving group (Gompert, 2012). Rare 

allele’s specific to the recipient population may be lost 

because of genetic drift or selection against introgressed 

alleles, particularly between small or isolated populations, 

if hybridization occurred with preferential transmission of 

alleles from one parental group over others. Thus, over 

time, genetic diversity will decrease as a consequence of 

the introduced alleles being fixed or disappearing as a 

result of chance events. According to some research, the 

adaptive capacity and stress-resilience of hybrid 

populations may be lowered by a reduction in genetic 

diversity. (Owens and Samuk, 2019). 

 

Integrating Fish Hybridization with Conservation 

Efforts 

 Fish hybridization can be integrated with conservation 

strategies that assist in the recovery of endangered 

species. Hybridization may be employed to introduce new 

genetic material into small or isolated populations, 

enhancing their resilience to environmental changes and 

reducing the risk of inbreeding (Ralls et al., 2018; 

Feuerstein et al., 2024). 

 For example, hybridization can introduce adaptive 

alleles, enhancing resilience to environmental changes, as 

seen in rockfish species’ population structure and genetic 

diversity (Wray et al., 2024). Genetic analysis of hybridized 

fish populations can also guide conservation by assessing 

hybridization levels, identifying management effectiveness 

and informing proactive measures for recovery in large 

river ecosystems. This has been applied on the Yellowstone 

Cutthroat Trout, where the management actions 

successfully reduced hybridization in the fish, 

demonstrating the importance of monitoring hybridization 

trends to formulate conservation strategies (Hargrove et 

al., 2024). Moreover, genetic monitoring of hybridized fish 

populations can provide insights into population viability 

and extinction risk, as evidenced by the endangered 

Lahontan Cutthroat Trout study in the US, which 

highlighted the need for immediate management 

interventions to address its hybridization (Hemstrom et al., 

2022). Additionally, the genetic analysis of hybridized fish 

populations can also improve conservation efforts through 

assisted gene flow, which aided in species recovery of the 

Coho Salmon population in California, USA, without 

causing outbreeding depression (Pregler et al., 2022). 

Careful management is necessary to ensure that 

hybridization does not compromise the genetic integrity of 

native species or lead to unintended ecological 

consequences (Nevado et al., 2011; Shechonge et al., 2018; 

Hata et al., 2019). 

 

Genomic Imprinting 

 Genomic imprinting, an epigenetic mechanism that 

results in parent-specific gene expression, plays a 

significant role in shaping the genetic and phenotypic 

characteristics of hybrid offspring. It is characterized by 

allele-specific expression of genes within chromosomal 

domains. This process can influence traits, such as growth 

rate, disease resistance and reproductive performance in 

fish hybrids (McGowan & Martin, 1997; Yang et al., 2022; 

Wang et al., 2022). Genomic imprinting has been widely 

reported in mammals (Bartolomei et al., 1991; Babak et al., 

2008), plants (Kermicle et al., 1970; Raissig et al., 2011) and 

insects (Lloyd 2000).  

 Studies have investigated genomic imprinting in fish 

and other aquaculture animals to elucidate its potential 

impact on important traits, such as growth disease 

resistance and reproductive performance (Zhou et al., 

2019; Yang et al., 2022; Wang et al., 2022). Imprints from 

both parental species may be present in the genomes of 

hybrid fish created by crossing two distinct fish species. 

These imprints can alter the expression of certain genes in 

the hybrid offspring, resulting in distinct features or 

phenotypes not seen in either parent. Imprinting is a 

critical sensitive period in fish development (Gómez-

Laplaza & Gil-Carnicero 2008) and it has been discovered 

that early separation of eggs from the mother has a 

substantial adverse effect on filial social bonding of fish fry 

later in life (Russock, 1999). 

 

Hybrid Breakdown 

 Hybrid breakdown is characterized by reduced fitness 

in post-F1 generations and it is a common phenomenon in 

hybrid populations. Genetic incompatibility between 

parental species can lead to maladaptive traits and 

reduced survival in hybrid offspring (Ellison & Burton, 

2008a; Renaut & Bernatchez 2011; Burton et al., 2013; 

Stelkens et al., 2015). This has been recorded in post-F1 

generations, with backcross and F2 generations being the 

most often studied. For example, Tigriopus californicus, a 

copepod that lives in tidal pools, has been the subject of 

extensive research on hybrid breakdown (Burton 1990; 

Edmands 1999; Edmands et al., 2009). In this copepod, 

heterosis was seen in F1 interpopulation hybrids, but post-

F1 generations showed a reduction in fitness even though 

they were viable and fertile (Edmands, 1999; Edmands et 

al., 2009; Barreto et al., 2014). In another study of African 

haplochromine cichlid fish by Stelkens et al. (2015), F2 

hybrids consistently showed lower viability (survival) with 

loss of fitness of up to 43 per cent when compared with 

non-hybrid crossings, and up to 21 per cent when 

compared with F1 hybrids. In addition, Renaut et al. (2009) 

found that backcross hybrids had higher levels of gene 

misexpression during the embryonic and juvenile phases 

of development in normal and dwarf whitefish when 

compared with F1 hybrids. 

 Hybrid breakdown that occurs in the subsequent 

generations arise from molecular incompatibilities within 

cells. These incompatibilities occur at both the structural 

level (protein-protein interactions) and the regulatory level 

(gene-gene interactions) (Ellison and Burton, 2008b; 

Burton, 2022). In fish hybridization studies, such 

incompatibility has been linked to intermediate or novel 

phenotypes in hybrids, which are sometimes maladaptive, 

due to disrupted gene interactions affecting development 

(Davies et al., 2012; Lu et al., 2020). These incompatibilities 

can be caused by the organelle genome’s (mainly 

uniparental) and nuclear genome’s (biparental) inheritance 

patterns (Rand et al., 2004; Burton et al., 2013; Han and 

Barreto, 2021). Paternal (inter-mitotype) backcrosses, in 
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contrast to maternal (intra-mitotype) backcrosses, tend to 

result in mismatched mitochondrial and nuclear genomes. 

Ellison and Burton (2008b) showed that disruptions in 

nuclear-mitochondrial gene interactions can contribute to 

reduced fitness in T. californicus interpopulation hybrids, 

also noting that maternal backcross hybrids could recover 

mitochondrial electron transport system (ETS) function and 

improve fitness and survival. 

 

Physiological Consequences 

 Fish hybridization can have complex physiological 

consequences, with hybrid offspring exhibiting a range of 

traits that differ from their parental species. These traits 

can be influenced by environmental conditions, with 

hybrids potentially being more vulnerable to changes in 

water temperature and pH (Deutsch et al., 2008; Sunday et 

al., 2012; Peng et al., 2014; Morgan et al., 2019; Thalib et 

al., 2020). 

 Several studies have shown that changes in 

environmental quality beyond certain thresholds can 

detrimentally affect biochemical and physiological 

processes in fish (Šimková et al., 2015; Thalib et al., 2020). 

Evidence indicates that hybrid offspring are more 

vulnerable to fluctuations in water temperature and pH 

changes. For example, the growth of juvenile hybrid 

groupers (Epinephelus fuscoguttatus ♀ × Epinephelus 

lanceolatus ♂) were significantly impacted by warm water 

(32°C) and low pH (pH 6) conditions in 25 days (Thalib et 

al., 2020). Surprisingly, it was observed that the interactive 

effects of acidic and warm conditions (usually brought on 

by climate change) had a positive effect on the hybrid 

groupers’ growth. However, the authors stated that such 

conditions also increased the living cost by decreasing the 

hepatosomatic index 2.3-fold compared with the optimal 

environment. They believed that such conditions had 

caused the hybrid fish to mobilize their protein for energy 

to support metabolic needs. Similarly, tropical fish species 

such as zebrafish living at the upper limits of their 

temperature tolerance range were also severely impacted 

by further environmental changes (Deutsch et al., 2008; 

Sunday et al., 2012; Ehrlén and Morris, 2015; Morgan et 

al., 2019). 

 Some fish must adjust their behavior and 

physiological needs by either increasing their feed intake 

to meet new high energy demands (Liew et al., 2013) or 

conserving energy for essential metabolic functions. Such 

responses have been observed in Chinese breams 

(Parabramis pekinensis) (Peng et al., 2014), common carps 

(Pang et al., 2016) and cobias (Rachycentron canadum) 

(Yúfera et al., 2019), where higher water temperatures led 

to increased feed intake. The increased feeding activity 

also resulted in higher endogenous ammonia excretion 

due to protein catabolism (Bucking, 2017). 

 

Ecological Implications and Evolutionary Consequences 

 Hybrid species may exhibit several evolutionary 

adaptations in response to climate change, enhancing 

ecosystem resilience through mechanisms like 

transgressive gene expression, seasonal resilience and 

reduced vulnerability, which are crucial for survival in 

changing environments. For instance, hybrid fish can 

display transgressive phenotypes, where they have greater 

fitness than parent species. This is particularly relevant 

under thermal stress, as hybrids may show unique gene 

expression patterns that allow them to adapt to changing 

temperatures (Schwartz et al., 2024). 

 Zhang et al. (2024) reported that temperate estuarine 

fish populations demonstrated seasonal adaptations to 

climate change, with habitat suitability shifting in response 

to environmental fluctuations. This seasonal resilience can 

help maintain functional assemblages and biodiversity, 

which are crucial for ecosystem stability (Zhang et al., 

2024). Hybrid populations often possess greater genetic 

variation, which can lead to adaptive introgression, 

reducing vulnerability to climate change and introducing 

novel genetic variations for adaptation and evolutionary 

rescue (Brauer et al., 2023). The study of rainbowfish 

(Melanotaenia spp.) across an elevation gradient in the 

Australian wet tropics also supported this theory, 

suggesting that adaptive introgression can provide 

essential genetic variation for survival in fluctuating 

environments (Brauer et al., 2023). 

 Although these adaptations offer a promising 

perspective for hybrid fish survival, it is crucial to recognize 

that not all hybrids will necessarily succeed under the 

pressures of climate change. Many may still encounter 

substantial challenges in rapidly shifting environments. 

Moreover, the introduction of hybrid species has the 

potential to destabilize ecological balances and drive 

unforeseen evolutionary consequences, particularly in the 

face of ongoing climate change (Brennan et al., 2014; 

Chunco, 2014; Taylor et al., 2015). 

 

Environmental Impact Assessment 

 Assessing the environmental impact of fish 

hybridization is crucial to understanding its long-term 

effects. Hybrid species may outcompete native species, 

leading to changes in community structure and 

biodiversity loss. Additionally, the introduction of hybrids 

into wild populations may result in genetic pollution, 

where the genetic integrity of native species is 

compromised (Hamilton et al., 2017; Saba and Balwan, 

2023). In some cases, genetic pollution may inadvertently 

provide beneficial genetic variability, as seen in killifish 

adapting to polluted environments due to the introduction 

of a non-native congener (Vignieri, 2019). Therefore, 

thorough environmental impact assessments should be 

conducted before introducing hybrid species into new 

habitats, with strategies in place to mitigate potential 

negative consequences. 

 Assessing the ecological impacts of fish hybrid species 

involves various methodologies, including risk assessment 

models and case studies. One effective approach is the 

Hybridization Risk Model (HRM), which combines habitat 

modeling with spatial data to evaluate the risk of 

hybridization between native and introduced species, as 

demonstrated in a study of bull and brook trout (Manning 

et al., 2022). This model identifies areas of extreme to low 

hybridization risk based on habitat suitability and species 

presence. Additionally, comparative functional response 

analyses (CFR) can be employed to assess the ecological 

consequences of hybrid species, as shown in studies of 
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invasive carp and goldfish hybrids, which revealed that 

hybridization did not produce novel phenotypes with 

enhanced ecological performance (Tarkan et al., 2024). 

Furthermore, ecological outcomes of hybridization can 

vary geographically, affecting biotic interactions and 

resource use, as evidenced by research on Catostomus 

fishes (Elizabeth et al., 2022). Integrating these 

methodologies can provide a comprehensive 

understanding of the ecological risks associated with fish 

hybridization (Ram and Fegade, 2024; Liwszyc and 

Larramendy, 2024). 

 One case of fish hybridization that resulted in adverse 

environmental consequences is reported by Hohenlohe et 

al. (2013) in the western US. The hybridization between 

native cutthroat trout (Oncorhynchus (O.) clarkii) and 

introduced rainbow trout (O. mykiss) had posed a 

significant threat to biodiversity in the local ecosystem. The 

introduction of rainbow trout for recreational fishing had 

resulted in widespread hybridization with local cutthroat 

trout, producing hybrid offspring known as “cutbows”. This 

interbreeding diluted the genetic integrity of native 

cutthroat trout populations, leading to a decline in the 

abundance of pure species. Moreover, the hybrid could 

outcompete native cutthroat trout for food and habitat, 

disrupting the local ecosystem. Conservation efforts were 

implemented to remove non-native species, restore native 

habitats, and employ genetic monitoring to maintain the 

integrity of cutthroat trout populations (Hohenlohe et al., 

2013). Studies have also shown that hybridization could 

also rapidly reduce the fitness of native cutthroat trout, 

threatening their long-term survival in the wild (Muhlfeld 

et al., 2009). 

 

Challenges, Solutions and Ethical Concerns 

 Improving our understanding of hybridization is 

critical for biodiversity conservation, adaptive evolution, 

ecological impact management, aquaculture enhancement 

and climate change adaptation. The resilience of aquatic 

ecosystems and the sustainable use of fish resources are 

encouraged by effective management and conservation 

strategies made possible by this understanding (Holsman 

et al., 2020; Pinna et al., 2023). While hybridization can 

contribute positively to species diversity and adaptation, it 

also poses challenges like different susceptibilities to 

diseases compared with parent species, potentially leading 

to new health challenges in aquaculture settings (Šimková 

et al., 2015). 

 Significant progress has been made, as shown by the 

development of chromosomal engineering, genetic 

engineering and cell nuclear transfer technologies (Lu and 

Luo, 2020; Moran et al., 2024). However, still, there are not 

many high-quality aquaculture fish stocks available. One of 

the primary reasons is the poor interaction and lack of 

collaboration between scientists and industry players in 

applying the breeding methods. Another challenge is the 

speed of incorporating new technologies into genetic 

breeding methods. The use of recent technological 

advancements, such as CRISPR-Cas9 in hybrid fish presents 

challenges, such as off-target effects and regulatory 

hurdles, additionally, the risk of chromothripsis, a 

phenomenon that can lead to genomic instability, raises 

concerns about the long-term implications of CRISPR-Cas9 

applications in fish (Höijer et al., 2021). 

 Although traditional cellular engineering techniques 

like artificial gynogenesis and distant hybridization have 

been shown to be successful, the number of new varieties 

produced with these techniques is restricted due to the 

need for optimal conditions (e.g., larger aquaculture sites 

and advanced facilities) as well as systematic detection 

techniques (Pinto et al., 2004; Liu et al., 2013; Liu et al., 

2024). However, efforts to resolve the aforementioned 

problems are encouraging. Therefore, there is a need to 

incorporate the application of genetic breeding techniques 

into the industry and adapt basic research with industry 

requirements. An innovative environment must be fostered 

to speed up the development of new technologies. 

 

Ethical Considerations and Public Perception 

  Besides raising ethical concerns, Fish hybridization 

also creates all kinds of perception, especially when it 

comes to genetic modification and release of hybrids into 

the wild (Olesen et al., 2010; Blackwell et al., 2020; Hata et 

al., 2022). The process has been misunderstood for a long 

time due to a lack of systemic theories and knowledge to 

manage it effectively (Wang et al., 2019b). Without 

comprehensive theories and reliable technologies, 

hybridization efforts can lead to unpredictable and 

inconsistent outcomes. 

 The use of genetic modification in fish aquaculture has 

the potential to increase food security and is claimed to be 

the next logical step for industry. However, it requires a 

careful balance of maintaining the welfare of animals, the 

integrity of ecosystems, and the rights of local 

communities and consumers. Public perception of 

genetically modified organisms (GMOs) also significantly 

influences agricultural policies and practices, shaping the 

regulatory frameworks and market acceptance. The 

interplay between public sentiments and policy is critical in 

determining the trajectory of biotechnology in agriculture. 

Issues often stem from perceived risks to health and the 

environment, leading to stringent regulations in some 

regions (Dessie & Zegeye 2024; Bearth et al., 2024). 

 There is great concern regarding GMOs, particularly 

when they are incorporated into hybridization applications 

in aquaculture. From an ethical standpoint, questions arise 

about the manipulation of natural processes and the long-

term impact on biodiversity. Critics argue that GMOs may 

disrupt ecosystems, create genetically unstable 

populations and blur species boundaries, besides 

undermining conservation efforts. Such concerns must be 

weighed against the potential benefits to food security and 

economic sustainability. Another public concern is the 

environmental consequences if GMOs escape or are 

introduced into the wild and breed with native species 

(Darek et al., 2011), potentially leading to the unintended 

spread of modified genes. GM fish that escape can also 

pose a threat to biodiversity, which can result in what 

scientists call the “Trojan gene” effect (Dowling et al., 2015; 

Lalyer et al., 2021). This refers to GM fish breeding with 

native populations, causing the genetic alterations to be 

increasingly passed to wild offspring (transgenic pollution). 

Research published in the Proceedings of the National 
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Academy of Sciences noted that the release of just 60 GM 

fish into a wild population of 60,000 could lead to the 

extinction of the wild population in less than 40 

generations (Muir & Howard, 1999). 

 Other underlying issues are the use of antibiotic 

resistance markers in GMO development. Research has 

indicated that the use of antibiotics in aquaculture has led 

to the emergence of antibiotic-resistant bacteria, which 

can infect humans through the food chain or direct contact 

(Preena et al., 2020). Studies have shown that antibiotic 

resistance genes (ARGs) are prevalent in aquatic 

environments, with the potential for horizontal gene 

transfer to human pathogens, thereby increasing public 

health risks (Lazăr et al., 2021). Furthermore, the presence 

of transferable genetic elements. Such as plasmids and 

integrons in fish pathogens. Exacerbates this issue as they 

facilitate the spread of resistance traits among bacterial 

populations (Preena et al., 2020; Deekshit et al., 2022). 

Thus, the integration of antibiotic resistance markers in GM 

fish may inadvertently contribute to the growing public 

health crisis of antimicrobial resistance. Moreover, the 

long-term effects of consuming genetically modified fish 

are not yet to be fully understood. Some concerns relate to 

potential allergens or unintended consequences that may 

only become apparent over time. 

 Another critical issue concerns regulatory trust and 

transparency. Public demand for clear labeling of GM fish 

is often driven by the desire for informed decision-making. 

Studies suggest that transparency in decision-making 

processes can significantly enhance public trust in 

regulatory bodies, especially when the rationale behind 

regulatory actions is explicitly communicated 

(Grimmelikhuijsen et al., 2021). In the context of food 

safety, stringent regulations and transparent labeling 

practices have been shown to increase consumer 

confidence by promoting both accountability and the 

ability to make informed choices (Adams, 2024). The 

ongoing debate over GM food labeling highlights the 

importance of providing consumers with not only product 

information, but also insights into labeling policies (Dixon 

et al., 2016). However, transparency must be meaningful; 

merely providing access to raw data without proper 

context may lead to confusion and loss of trust (Löfstedt &  

Wardman, 2016). Therefore, enhancing transparency within 

regulatory frameworks, particularly those concerning food 

safety, is crucial for building consumer trust and making 

informed decisions regarding the consumption of GM 

products (de Boer, 2019). 

 

Regulatory and Policy Considerations 

 Regulatory frameworks play a crucial role in ensuring 

that hybridization is carried out responsibly in the industry. 

Policies may vary by region, affecting the approval process 

for new hybrid species and the use of genetic modification 

technologies. Understanding and navigating these 

regulatory landscapes is essential for researchers and 

industry players to successfully develop and commercialize 

hybrid fish. 

 In the European Union (EU), there are strict regulations 

governing GMOs, with priority on safety and transparency, 

besides the mandatory labeling requirements (Jha et al., 

2021). In contrast, the US employs a more flexible 

approach, integrating existing frameworks to assess 

emerging genetic technologies such as genome editing, 

which encourages innovation while mitigating risks 

(Marden et al., 2023). Similarly, Canada evaluates these 

technologies by emphasizing the importance of adapting 

policies to keep pace with scientific advancements 

(Marden et al., 2023). The EU’s comprehensive system has 

fostered public trust through rigorous safety evaluations 

and stakeholder engagement (Mbaya et al., 2022). 

 In the developing world, South Africa's evolving 

seafood regulations offer a glimpse on how the country is 

working to align with international standards, employing 

DNA analysis mostly for traceability and regulatory 

compliance (Naaum and Hanner, 2016). While there are 

ongoing efforts to harmonize regulations globally, 

significant discrepancies remain, highlighting the need for 

localized approaches that account for regional contexts 

and public perceptions (Marden et al., 2023). 

 

Collaborative and Interdisciplinary Research 

 Interdisciplinary and collaborative research offers 

significant advantages and challenges. On the positive 

side, interdisciplinary research can lead to innovative 

solutions that address the challenges of hybridization, 

from improving breeding techniques to managing 

ecological impacts. Collaborative approaches also facilitate 

the exchange of knowledge between academia and 

industry, ensuring that research findings are translated into 

practical applications that benefit both the environment 

and the economy. Moreover, such collaboration enhances 

research outcomes by providing nuanced insights that 

single-discipline approaches might miss, particularly in 

complex biological systems like fish hybridization 

(Lanterman & Blithe, 2019). By combining expertise from 

various fields, researchers can achieve a more 

comprehensive analysis of hybridization phenomena, as 

demonstrated in studies of sympatric fish species (Pinheiro 

et al., 2019). 

 One the other hand, challenges include extended 

working timelines due to the need for consensus among 

diverse team members and difficulties in publication, 

which can arise from disciplinary biases and editorial 

preferences (Lanterman & Blithe, 2019). Additionally, 

embracing diverse methodologies can result in 

epistemological friction, where productive yet complex 

interactions may be seen as obstacles rather than assets 

(Laborde et al., 2019). Despite these challenges, 

interdisciplinary research remains a crucial driver of 

innovation in understanding fish hybridization, 

necessitating careful navigation of its complex dynamics to 

mitigate potential hindrances to progress. 

 

Importance of Data Sharing and Open Access 

 Data sharing and open access to research findings are 

critical for accelerating progress in fish hybridization. These 

are crucial in advancing collaboration and knowledge 

dissemination in fish hybridization research. By making 

data and publications freely available, researchers can 

build on each other's work, avoid duplication of efforts and 

foster innovation. Open access also ensures that the 
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benefits of hybridization research are widely disseminated, 

reaching stakeholders across the globe, including 

scientists, policymakers, and aquaculture practitioners. 

Promoting a culture of transparency and collaboration in 

research will drive the development of more effective and 

sustainable hybridization practices. 

 These practices facilitate universal access to datasets 

and research findings, thereby creating a collaborative 

environment that promotes innovation and collective 

problem-solving. Open access articles have been 

associated with increased citation rates, which indicates 

that heightened visibility may lead to greater engagement 

and interaction among researchers (Clements, 2017).  

 Moreover, implementing a structured data sharing 

model can significantly enhance the management and 

reutilization of research data, helping researchers conserve 

time and resources while fostering collaborative initiatives 

(Jusoh et al., 2019). Effective collaboration in this field 

depends on open communication and trust among 

stakeholders, which can be strengthened through shared 

data initiatives (Calderwood et al., 2023). The distinction 

between data sharing and collaborative efforts 

underscores the importance of coordinating concurrent 

operations on shared data, which can lead to more 

effective and impactful research outcomes (Perrino et al., 

2013). Despite these benefits, challenges such as trust 

issues and barriers to effective communication remain, 

highlighting the need for ongoing efforts to improve 

collaborative frameworks.  

 

Conclusion 

 Fish hybridization offers significant potential to 

enhance aquaculture by producing genetically diverse 

and superior offspring. However, the process also 

presents challenges related to genetic diversity, 

ecological balance and ethical considerations. A 

thorough understanding of hybridization techniques and 

their implications is essential for responsible and 

sustainable development of aquaculture practices. 

Ongoing research and careful management are necessary 

to maximize the benefits of hybridization while 

minimizing its potential risks. Although hybridization 

brings huge benefits to fish aquaculture, it appears to 

have far-reaching ramifications in biodiversity, ecological 

dynamics and evolutionary processes. It is crucial to 

adhere to local and international regulations and obtain 

necessary approvals to ensure ethical standards are met 

and promote responsible hybridization practices. 

 Additionally, data sharing and open access are 

essential for fostering collaboration and innovation. By 

providing universal access to research data and findings, 

these practices support effective problem-solving and 

resource optimization. Therefore, a comprehensive 

approach that combines interdisciplinary collaboration 

with robust data sharing frameworks is crucial for the 

responsible and sustainable development of aquaculture 

practices. Continued research and strategic management 

are necessary to fully realize the benefits of fish 

hybridization and mitigating its potential risks. 
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