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ABSTRACT  Article History 

Caulerpa (C.) cylindracea is a species of green seaweed known for its antibacterial bioactivity. 

Crude extracts of weeds are promising to way to check their antimirobiolal potential against 

various pathogens. Alongwith other factors, the bioactivity of weed extracts also greatly 

dependent upon method of its extraction. Consequently, this study aimed to identify the 

bioactive constituents and antibacterial bioactivity of crude extracts of C. cylindracea obtained 

through the ultrasound-assisted extraction (UAE) method against Morganella morganii bacteria. 

The C. cylindracea was extracted using UAE with different methanol and acetone ratio and 

various time. Best extract against M. morganii would be further identified its bioactives using 

LC-HMRS. A15-minute extraction time, a maximum temperature of 40°C, a frequency of 50 Hz, 

an amplitude of 50%, and a solvent ratio of methanol to acetone (2.5:7.5) in the stolon, showed 

best antibacterial activity. A total of 24 bioactive compounds is identified, among which three 

exhibit antibacterial activity: betaine, 5-Fluoro-2-hydroxybenzoic acid, and Isoamylamine. Their 

inhibitory mechanisms involve the disruption of bacterial membranes and metabolic processes, 

ultimately leading to cell death. 
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INTRODUCTION 
 

Seaweed is an abundant bioactive chemical source due 

to its capacity to generate a variety of secondary 

metabolites (Val et al., 2001; Almeida et al., 2020). These 

metabolites exhibit a diverse range of biological activities, 

encompassing antibacterial, antiviral, antioxidant, anti-

aging, anti-inflammatory, anticancer and antihypertensive 

properties (Tanna et al., 2018; Yap et al., 2019; Belkacemi et 

al., 2020; Permatasari et al., 2021; Avila-Romero et al., 2023; 

Nurkolis et al., 2023; Nurkolis et al., 2023). Seaweeds are 

categorized into three types according to their pigments: 

red (Rhodophyceae), brown (Phaeophyceae) and green 

(Chlorophyceae) seaweeds (Hamid et al., 2019; Rajivgandhi 

et al., 2021). C. cylindracea is the most prevalent green 

seaweed; however, despite its potential as an antibacterial 

agent, its antibacterial biological activity has not been 

thoroughly investigated, in contrast to C. racemosa and C. 

lentilifera (Yap et al., 2019; Marraskuranto et al., 2021; 

Palaniyappan et al., 2023). 

The efficacy of crude seaweed extracts is contingent 

upon the particular seaweed species, its growth 

environment, solvent concentration, polarity, and extraction 

process (Nawaz et al., 2020; Ruslan et al., 2021). Selecting 

the appropriate extraction method is essential for 

maintaining the desired quality of the target compounds 

(Gullón et al., 2020). The UAE is an eco-friendly extraction 

process that presents several benefits (Muhammad et al., 

2023), including low disruption to the stability of bioactive 

substances and the potential to decrease reliance on 

harmful solvents. Moreover, the UAE enhances efficiency, 

lowers   extraction   duration   and  is  economically  viable. 
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It improves the quality and yield of bioactive chemicals (Zhu 

et al., 2017; Cikos et al., 2018; Ummat et al., 2021; Putra et al., 

2022). Moreover, UAE is an exceptionally effective technique 

that circumvents the necessity for elevated temperatures. It 

has been effectively utilized in the extraction of thermally 

labile compounds, as evidenced by research undertaken by 

Zhou et al. (2013) and Skenderidis et al. (2017). 

Morganella (M.) morganii, an enteric bacterium within 

the Scombroidae fish group (Rodtong et al., 2005; Ferrario 

et al., 2012; Gopi et al., 2016), this bacterium possesses the 

enzyme histidine decarboxylase, which facilitates the 

conversion of histidine into histamine in fish (Tsai et al., 

2006; Ruiz-Capillas & Herrero, 2019) The resultant 

histamine can lead to poisoning, manifesting symptoms 

such as rash, urticaria, nausea, vomiting, diarrhea, and 

erythema (Chen et al., 2010; Silva et al., 2011; Evangelista et 

al., 2016; Elik et al., 2019). The overuse of antibiotics in food 

production contributes to antimicrobial resistance, 

threatening global health and sustainability. Seaweed 

extracts offer a promising alternative, leveraging their 

natural bioactive compounds with antimicrobial properties 

to combat pathogens effectively in food systems (Callaway 

et al., 2021). 

The utilization of seaweed crude extract as an 

antibacterial agent primarily targets a range of human 

pathogenic bacteria, including Salmonella paratyphi (Gram-

negative), Vibrio cholerae (Gram-negative), Escherichia coli 

(Gram-negative), Bacillus subtilis (Gram-positive), and 

Staphylococcus (Gram-positive) (Avila-Romero et al., 2023; 

El-Gammal et al., 2024; Honey et al., 2024). Consequently, it 

is essential to examine the efficacy of C. cylindracea crude 

extract as an antibacterial agent against M. morganii and to 

assess the bioactive component of the seaweed utilizing the 

UAE approach. 

 

MATERIALS & METHODS 
 

Collection and Preparation of Caulerpa Cylindracea 

C. cylindracea was obtained from Puntondo Beach in 

Takalar Regency, South Sulawesi Province, Indonesia. The 

sampling location's coordinates are 05035'33.87'' S 

119029'00.92'' E. Fig. 1 illustrates the specimen of C. 

cylindracea and the precise location of its collection. Mud or 

any other clinging contaminants were removed using pure 

water. After that, the material was diminished by slicing it 

into segments, which are further chopped and ground to 

produce powdered seaweed. The samples were kept at 4°C 

until future usage. 

 

 
Fig. 1: Physical map indicating site of sample collection and Caulerpa cylindracea. 
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Ultrasound-Assisted Extraction of C. Cylindracea 

The extraction process employs the UAE method 

utilizing the ultrasonicator model UCD-950 (Biobase) with a 

power supply of 1000W and a voltage of 220V at 50Hz. The 

extraction procedure is described by (Kadam et al., 2015) 

with modifications. Briefly, 10g of powdered simplisia from 

each seaweed component, specifically the stolon, ramuli, 

and complete organism (whole), were extracted using 

100ml of solvent. The methanol and acetone were utilized 

in several ratios: 5:5 (A), 7.5:2.5 (B), 2.5:7.5 (C), pure methanol 

(D), and pure acetone (E). The extraction was conducted for 

15, 25 and 35min at a maximum temperature of 40°C, with 

an amplitude of 50%. The collected materials were 

subsequently centrifuged at 6000rpm for 15min. The 

supernatants were evaporated using a vacuum evaporator 

at 40°C for 25min. The extracts were quantified and stored 

at -20°C. The yield value of each treatment extract of C. 

cylindracea was determined by weighing the extract and 

applying the subsequent formula: 

          Amount of product 

                      Yield=                               x 100% 

            Amount of sample 

 

Antibacterial Activity of C. Cylindracea Crude Extract 

M. morganii was obtained from the microbiology 

laboratory at the Faculty of Medicine, Brawijaya University. 

The analysis utilized the disc diffusion method, as described 

by Yusuf et al. (2020), with slight modifications. 20ml of 

sterile nutrient agar was dispensed into a petri dish and 

incubated at 37°C, followed by the inoculation of 

approximately 0.1ml of M. morganii bacterial culture. 

Dissolve the resultant extract in a 10% DMSO solution 

containing 0.5% Tween 80 at 500 (I) and 1000mg/ml (II), 

respectively then sterilise it with a 0.45µm filter membrane. 

Apply the solution onto blank paper discs and, using sterile 

tweezers, position them on a Sodium Agar plate within a 

petri dish. Subsequently, incubate at 37°C for 24hrs. The 

negative control employed a 10% DMSO solution. 

Antibacterial activity is classified as highly active when the 

zone exceeds 10mm, mildly active for 7-10mm, minimally 

active for 6-7mm, and inactive when the zone is less than 

6mm (Chandra et al., 2011). 

 

Identification of Bioactive Compounds by Liquid 

Chromatography High-Resolution Mass Spectrometry 

(LC-HRMS) 

The LC-HRMS analysis of C. cylindracea crude extract 

was conducted at the integrated research laboratory of 

Brawijaya University. The extracted sample was diluted with 

ethanol solvent to achieve an appropriate density, neither 

overly concentrated nor excessively dilute, resulting in a 

final volume of 1500µL. The mixture was then vortexed at 

2000 rpm for 2min and centrifuged at 6000 rpm for 2min. 

Obtain the supernatant, filter it through a 0.22µm syringe 

filter, and transfer it into a vial for insertion into the 

autosampler prior to injection into the LC-HRMS. The liquid 

chromatography system is an HPLC utilizing the thermo 

scientific dionex ultimate 3000 RSLCnano, equipped with a 

microflow meter and an analytical column, hypersil GOLD 

PFP, measuring 50 x 1mm with a particle size of 1.9µm. 

Solvents: 0.1% Formic acid in Water (A), 0.1% in Acetonitrile 

(B). Analytical flow rate of 40µL/min with a runtime of 30min 

in a column oven at 30°C. The HRMS equipment is the 

thermo scientific Q exactive, operating at a full scan 

resolution of 70,000 and data-dependent MS2 resolution of 

17,500. The runtime is 30min, with positive polarity and data 

processing is conducted using Compound Discoverer 

software in conjunction with the mzCloud MS/MS Library. 

 

Scanning Electron Microscopy (SEM) Observation  

Cell observation of M. morganii pertains to the 

modification by Wang et al. (2022). Bacterial cells were 

produced by centrifugation at 8500 rpm for 5min, followed 

by three washes with 0.01M Phosphate Buffered Saline (PBS). 

The resultant cell pellets were dehydrated in graded ethanol 

solutions (30, 50, 70, 85, 90 and 100%, respectively) and 

washed twice with isopentyl acetate. The coating process 

was conducted using a sputter coater (Quorum type Q150R 

S Plus) with a sputter current of 20 mA and a duration of 35 

seconds, utilizing gold material. Cell morphology was then 

observed with a scanning electron microscope (SEM) 

instrument, FEI Quanta FEG 650, equipped with an EDS 

detector: X-act Oxford Instrument and EDS software: 

AZtecOne. This analysis was conducted at the integrated 

research laboratory of Brawijaya University. 

 

Statistical Analysis 

Data were analyzed using ANOVA, and if a significant 

difference between the treatments was seen, the analysis 

proceeded with the Tukey HSD (High Significant Difference) 

test. Data analysis employed IBM SPSS Statistics 27 software. 

 

RESULTS & DISCUSSION 
 

Extract Yield of C. Cylindracea by UAE 

The maximum extract yield on the stolon part was 

10.82%, while the minimum was 2.48%. The maximum yield 

on ramuli parts was 11.55%, the minimum was 2.98%, the 

best yield was 11.18%, and the lowest was 2.61% (Table 1). 

The extract of the ramuli part of C. cylindracea produced the 

maximum extract yield (11.55%) when using pure methanol 

as a solvent for 35min, with statistical significance (P<0.05). 

 

Table 1: Effect of solvent concentration, extraction time on extract yield of various parts of C. cylindracea by UAE 

Solvent Concentrations Extraction Time 

Stolon Ramuli Whole 

35' (%) 25' (%) 15' (%) 35' (%) 25' (%) 15' (%) 35' (%) 25' (%) 15' (%) 

A 7.59+0.03f 7.10+0.02f  6.12+0.02e  8.66+0.025h  7.99+0.04f 6.87+0.02e  8.05+0.025h  7.54+0.02f  6.96+0.026e  

B 8.61+0.02h 8.00+0.05g 7.08+0.02f 9.81+0.025i 8.83+0.025h 7.48+0.02f 9.10+0.025i 8.38+0.02h 7.19+0.026f 

C 4.17+0.02d  3.76+0.025c 2.93+0.025b 4.83+0.02d 4.31+0.015d 3.30+0.025c 4.55+0.02d  4.07+0.02d 3.16+0.025c 

D 10.82+0.025m 9.89+0.04i  8.43+0.02h 11.55+0.02o 10.42+0.02m 8.63+0.025h 11.18+0.025n 10.20+0.025m 8.69+0.02h 

E 3.25+0.02c  2.98+0.025b 2.48+0.02a 4.22+0.03d 3.81+0.025c 2.98+0.02b 3.55+0.015c 3.24+0.02c 2.61+0.02b 

Ratio of solvent concentrations between methanol and acetone: A (5:5), B (7.5:2.5), C (2.5:7.5), D (pure methanol), E (pure acetone).  Different superscript letters 

within the same column or row signify statistically significant differences (P<0.05) among the groups 
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The yields from all treatments indicate that applying 

polar solvents (methanol) results in maximum yields. In 

contrast, reducing solvent ratio, specifically with the 

inclusion of semi-polar solvents (acetone), leads to a loss in 

yield. The polarity of components in seaweed influences the 

yield of the extract (Agregán et al., 2017). Consequently, the 

solvent's polarity and the extraction duration significantly 

affect the extraction process (Kumar et al., 2020) Applying 

polar solvents, such as methanol, yields higher results than 

semi-polar solvents like acetone (Airanthi et al., 2011; 

Higgins et al., 2019; Afrin et al., 2023). In addition, modern 

extraction techniques, such as microwave-assisted 

extraction and ultrasonic-assisted extraction, enhance 

seaweed extract yields by optimizing the interaction 

between the solvent and the seaweed matrix (Dulanlebit & 

Hernani, 2023). UAE has emerged as an effective technique 

for enhancing the yield of seaweed extracts. This method 

employs ultrasonic waves to generate cavitation bubbles in 

the solvent, which subsequently disrupt the cell walls of the 

seaweed, thereby facilitating the release of bioactive 

compounds into the solvent (Shukla et al., 2019). The 

efficacy of UAE is ascribed to its capacity to improve mass 

transfer and augment the solubility of extracted 

compounds, which is advantageous for the extraction of 

important chemicals from seaweed (Shayen et al., 2023). The 

choice of solvent and extraction conditions greatly influence 

the yield of seaweed extracts, whereby the use of dried 

seaweed, compared to fresh varieties, can markedly 

improve extraction efficiency due to greater solvent 

accessibility to cellular structures (Gomes et al., 2024), the 

implementation of UAE facilitates the utilization of eco-

friendly solvents, aligning with the tenets of green chemistry 

(Dulanlebit & Hernani, 2023; Muhammad et al., 2023)  

 

Antibacterial Activity of C. Cylindracea 

The inhibitory zone produced by the crude extract of C. 

cylindracea on the stolon, ramuli, and whole at 

concentrations of 500 and 1000mg/ml, respectively (Table 

2). The results indicated that the stolon segment, subjected 

to an extraction duration of 15min and a solvent ratio of 

methanol to acetone at 2.5:7.5, exhibited optimal 

antibacterial efficacy, demonstrating moderate activity at 

8.46 and 8.51mm, respectively.Other treatments had 

marginal antibacterial action at a concentration of 

500mg/ml, whereas C. cylindracea crude extract at 

1000mg/ml demonstrated predominantly marginal 

bacterial activity, with the remainder being mildly active.  

The solvent concentration C (methanol: acetone 2.5:7.5) 

exhibited the most significant antibacterial activity against 

M. morganii at a concentration of C. Cylindracea crude 

extract 500 mg/ml, categorized as mildly active. At the same 

time, other treatments demonstrated mildly active 

antibacterial activity ranging from 6 to 7mm. This suggests 

that the semi-polar solvent (acetone) predominates. In 

contrast, the polar solvent (methanol) is secondary in 

achieving optimal antibacterial activity of the crude extract 

of C. cylindracea against M. morganii. The antibacterial 

efficacy of seaweed is affected by various factors, such as its 

habitat, growth stage, extraction technique, and solvent 

polarity  (Godlewska  et  al. , 2016;  Vimala  &  Poonghuzhali,  
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2017; Nofal et al., 2022), with methanol crude extract 

yielding the most significant gram-positive antibacterial 

activity, while acetone crude extract demonstrates gram-

negative antibacterial activity (Perez et al., 2016; Moubayed 

et al., 2017). 

Acetone is a more appropriate solvent for extracting 

antibacterial chemicals from green seaweeds that exhibit 

antibacterial activity against diverse gram-negative bacteria 

(Manivannan et al., 2011; Madkour et al., 2019). Acetone is 

recognized for its ability to extract a broader spectrum of 

polar and non-polar molecules, perhaps augmenting its 

antibacterial efficacy against Gram-negative bacteria, which 

are often more resistant due to their thicker cell walls (Perez 

et al., 2016; Saleh et al., 2019). The efficacy of solvents 

employed in extraction is contingent upon the species of 

seaweed and the specific bacteria targeted, suggesting that 

no singular solvent is ideal for the extraction procedure (Yap 

et al., 2019). 

 

LCHRMS Analysis 

LC-HRMS was performed to detect bioactive 

compounds in the crude extract of C. cylindracea from the 

stolon part, which was the most effective component 

against the antibacterial M. morganii (Table 3). The extract 

contains bioactive compounds, including betaine (Fig. 3), 5-

Fluoro-2-hydroxybenzoic acid, and Isoamylamine (Fig. 4), 

which exhibit antibacterial properties through mechanisms 

that disrupt bacterial membranes and metabolism, leading 

to bacterial death, as shown by SEM results in Fig. 5. Betaine 

has antibacterial bioactivity against gram-positive and 

gram-negative microorganisms, such as Escherichia coli, 

Salmonella typhimurium, and Staphylococcus aureus have 

been reported (Lindstedt et al., 1990; Ahlström et al., 1999; 

Birnie et al., 2000; Liu et al., 2020), Betaine exerts its 

antimicrobial effect primarily by interacting with the 

negatively charged bacterial membrane surface, where its 

positively charged groups bind, leading to membrane 

destabilization and subsequent bacterial cell death (Derwin 

et al., 2022). 

Betaine demonstrates antibacterial properties by 

disrupting bacterial membranes and metabolism (Massai et 

al., 2019; Derwin et al., 2022). Betaine engages with the 

anionic surface of the bacterial membrane. The positively 

charged groups in betaine can adhere to these surfaces, 

leading to membrane instability and bacterial cell death. 

High quantities of betaine can alter osmotic pressure, 

releasing cellular contents and subsequent cell lysis 

(Stadmiller et al., 2017). 
 

SEM Analysis 

The application of crude extract from C. cylindracea 

against M. morganii demonstrated that bacterial cells 

treated with 500mg/mL (Fig. 2) exhibited shrinkage. 

Normal cells measure 3.70µm in length and possess a 

diameter of 0.81µm, whereas cells exposed to crude 

extract of C. cylindracea measure 0.48µm in length and 

have a diameter of 0.12µm (Fig. 6). The antibacterial 

mechanism of seaweed crude extract can lead to the lysis 

of cell walls, releasing substantial fluid and causing cellular 

shrinkage and death (Saleh et al., 2019). Furthermore, the 

cell membrane cannot endure the cytoplasm's internal 

pressure, resulting in leakage. The discharge of 

cytoplasmic constituents, such as proteins and nucleic 

acids, intensifies the decline in cellular function, resulting 

in cell death (Sutharshan et al., 2021). 

 

Conclusion 

The crude extract of C. cylindracea, obtained via the 

UAE method, exhibits inhibitory activity against M. morganii. 

LC-HRMS analysis reveals the presence of three bioactive 

compounds with antibacterial properties: betaine, 5-Fluoro-

2-hydroxybenzoic acid, and Isoamylamine, among the 24 

bioactive compounds identified in the crude extract of C. 

cylindracea. The stolon extract of C. cylindracea, prepared 

with a methanol:acetone (2.5:7.5) solvent ratio and a 15min 

extraction   time,   demonstrated  the  highest  antibacterial 

 
Table 3: Bioactive compounds identified from Caulerpa cylindracea crude extract through LC-HRMS 

No Bioactive Formula Calc. MW RT [min] Area (Max.) 

1 2-(1,3,5-Triazin-2-yl)-1,2-dihydro-1,2,3,4-tetrazine C5 H5 N7 163.06017 1.542 7.46E+09 

2 Nitromethanetriol C H3 N O5 109.00139 1.539 1.48E+09 

3 2-(3-Methyl-5-nitro-3H imidazol-4- ylamino)-ethanol C6 H10 N4 O3 186.07611 1.526 1.03E+09 

4 μ6004C2Z3 C7 H13 Cl O2 164.06105 1.542 9.40E+08 

5 2-(1,3,5-Triazin-2-yl)-1,2-dihydro-1,2,3,4-tetrazine C5 H5 N7 163.06017 1.239 7.62E+08 

6 3-Oxa-2,4,6,8,9 pentaazabicyclo[3.3.1]nona- 1(9),5,7-trien-7-amine C3 H4 N6 O 140.04445 1.542 6.64E+08 

7 5-Fluoro-2-hydroxybenzoic acid C7 H5 F O3 156.02196 1.638 5.99E+08 

8 2-(1,3,5-Triazin-2-yl)-1,2-dihydro-1,2,3,4-tetrazine C5 H5 N7 163.06017 1.703 3.29E+08 

9 Betaine C5 H11 N O2 117.07903 1.088 2.85E+08 

10 1H-Imidazo[4,5 e][1,2,3,4]tetrazine C3 H2 N6 122.03386 1.541 2.41E+08 

11 2-Phenyl-2-[(1E)-1-propen-1-yl]- 1,3,5,2,4,6-trioxatrisilinane C9 H14 O3 Si3 254.02399 1.514 2.30E+08 

12 Nitromethanetriol C H3 N O5 109.00142 1.217 1.66E+08 

13 5 (Dimethylamino)tetrazolo[1,5- a][1,3,5]triazin-7(3H)-one C5 H7 N7 O 181.07079 1.485 1.07E+08 

14 2-Ethynyl-1-benzofuran C10 H6 O 142.04201 1.542 9.84E+07 

15 2-(3-Methyl-5-nitro-3H-imidazole-4- ylamino)-ethanol C6 H10 N4 O3 186.07611 1.228 8.18E+07 

16 N-Chloro-N-methyl-1-Butanesulfonamide C5 H12 Cl N O2 S 185.02767 1.166 6.75E+07 

17 BMEDA C10 H24 N2 S2 236.13828 1.841 6.18E+07 

18 Piracetam C6 H10 N2 O2 142.07416 1.257 5.42E+07 

19 Choline C5 H13 N O 103.09988 1.353 3.93E+07 

20 Piracetam C6 H10 N2 O2 142.07416 1.093 3.27E+07 

21 N,Ndiethylmethanesulfonamide C5 H13 N O2 S 151.06659 1.03 2.37E+07 

22 Tetraethynylethene C10 H4 124.03138 1.544 2.37E+07 

23 BMEDA C10 H24 N2 S2 236.13828 1.713 2.04E+07 

24 Isoamylamine C5 H13 N 87.10511 1.388 5.95E+06 
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Fig. 2: Total ion chromatogram. 

 

 
Fig. 3: Chromatogram of betaine.  

 

 
Fig. 4: Chromatogram of Isoamylamine.  
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Fig. 5: Chromatogram of 5-

Fluoro-2-hydroxybenzoic acid.  

 

 

Fig. 6: SEM micrograph of 

Morganella morganii (a), (b) 

without treatment; (c), (d) with 

treatment. 

 

 

efficacy compared to extracts from other plant parts and 

conditions, showcasing its potential as an effective bioactive 

agent. Alternative treatments exhibit marginal antibacterial 

action at 500mg/ml of crude extract C. cylindracea. In 

contrast, at 1000mg/mL, the bacterial activity is 

predominantly marginal, with the remainder being mildly 

active. Subsequently, to validate the antibacterial bioactivity 

of these three components, forthcoming research must 

undertake the fractionation or purification of the crude 

extract derived from C. cylindracea. 
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