
424 

International Journal of Agriculture and Biosciences 2025 14(3): 424-435. 

 

https://doi.org/10.47278/journal.ijab/2025.024  
This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

RESEARCH ARTICLE eISSN: 2306-3599; pISSN: 2305-6622 

 

Groundwater Level Simulation using Hybrid Model 
 

Shiva Khosravi  and Amir Robati * 

 

Department of Civil Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran 

*Corresponding author: Gammirrr@gmail.com 

 

ABSTRACT  Article History 

Simulation of groundwater level fluctuations as the most important source of water supply plays 

a substantial role in gathering information for planning and managing water resources.  

This study introduces a hybrid methodology combining discrete wavelet transforms (DWT) with 

artificial neural networks (ANN) to simulate groundwater level fluctuations. The optimal mother 

wavelet was considered, and the simulated values were compared to those generated by a 

robustly intelligent tool, such as weighted least squares support vector machine (WLS-SVM). To 

assess the robustness and efficiency of the DWT-ANN model, monthly groundwater level time-

series data from three observation wells in the Bagheyn Plain, Iran, were used. Statistical 

indicators, including mean absolute error (MAE), root mean squared error (RMSE), and Nash-

Sutcliffe efficiency (NSE), were calculated to evaluate the models' performance. Results showed 

that the DWT-ANN model achieved superior performance, yielding MAE, RMSE, and NSE values 

of 0.044, 0.064, and 0.9998, respectively, at the Saadi observation well. These findings 

underscore the DWT-ANN model's superiority over the WLS-SVM model in simulating 

groundwater levels for the selected wells. Furthermore, the DWT-ANN approach demonstrated 

enhanced accuracy, with simulated values closely aligning with observed data. 
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INTRODUCTION 

 

Groundwater is an essential resource for potable water 

supply, playing a significant role in supporting 

environmental and economic activities. However, the over-

extraction of aquifers has led to declining groundwater 

levels, which underscores the necessity for sustainable 

groundwater management (Adamowski, 2011). Accurate 

groundwater level simulations are crucial for developing 

effective strategies to manage these resources efficiently 

(Rahman et al., 2020). Traditional methods for measuring 

groundwater levels, such as advanced water level loggers 

and acoustic or optical sounding devices, are time-intensive 

and expensive. Therefore, artificial intelligence (AI) 

techniques offer a cost-effective alternative for simulating 

groundwater levels. Among these techniques, support 

vector machines (SVMs), artificial neural networks (ANNs), 

and wavelet transformations have proven highly effective 

for simulating nonlinear hydrological processes (Rajaee et 

al., 2019; Tao et al., 2022; Boo et al., 2024). 

Support vector machines, first proposed by Vapnik 

(2013), have been successfully utilized for diverse modeling 

and simulation problems. Recent studies on groundwater 

level modeling using SVMs include works by Mallikarjuna et 

al. (2021), Anh et al. (2023), and Satapathy et al. (2023). 

Suykens et al. (2002) introduced the weighted least squares 

support vector machine (WLS-SVM), which has 

demonstrated superior accuracy compared to both SVM 

and the least squares version of SVM (LS-SVM). Several 

researchers have applied WLS-SVM in groundwater 

simulations, reporting minimal differences between 

observed and simulated values (Liu et al., 2009; Tang et al., 

2019; Moravej et al., 2020). Additionally, Samani et al. (2023) 

found that the wavelet-LS-SVM model outperformed other 

standalone and hybrid wavelet-based AI methods for 

simulating groundwater levels. 

Numerous studies have been conducted on the use of 

ANN models to simulate groundwater levels (Lohani et al., 

2015; Lee et al., 2019; Derbela et al., 2020; Wunsch et al., 

2021). ANN models, widely used for groundwater 

simulations, encounter challenges when processing non-

stationary time-series data. These limitations necessitate 

data pre-processing (Zare et al., 2018; Zhang et al., 2019; 

Yadav et al., 2020; Samani et al., 2023).  
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The wavelet transformation is a powerful tool for 

analyzing non-stationary hydrological signals (Hsu et al., 

2010; Zhu et al., 2020; Gordu & Nachabe, 2021). Wavelet 

analysis decomposes time-series data in to approximation 

and details components. The new time-series data is utilized 

as input data for the ANN model. Therefore, the wavelet 

approach is combined with artificial intelligence methods 

such as ANN to create a wavelet–AI model. 

The use of wavelet–ANN to simulate groundwater levels 

has been addressed in several research studies over the past 

years (Moosavi et al., 2013; Zhou et al., 2017; Ebrahimi et al., 

2017). These studies highlight how wavelets have the 

capability to improve the performance of ANN for 

simulating groundwater levels. Nourani et al. (2014) 

provided an interesting review study on hybrid models 

(combining wavelet and artificial intelligence) for 

hydrological processes, such as groundwater level 

fluctuations. They recommended that the authors conduct 

future research in these fields. Recent studies, such as those 

by Vousoughi (2023) and Shahbazi et al. (2023), have also 

affirmed the enhanced performance of wavelet-ANN 

methods for simulating groundwater levels. 

Rajaee et al. (2019) and Boo et al. (2024) demonstrated 

in their review studies that the largest number of studies on 

groundwater level simulation using AI methods were 

conducted in Iran. This point maybe attributed to the 

necessity of conducting more groundwater studies in arid 

and semi-arid regions such as Iran. Therefore, there is a 

need for an accurate groundwater level simulation model in 

these regions. Our research purpose is to develop the most 

accurate model for simulating groundwater level. A highly 

accurate groundwater level simulation model is a powerful 

tool for sustainable groundwater resource management. 

Accordingly, a hybrid approach combining discrete wavelet 

transforms (DWT) and artificial neural networks (ANN) is 

proposed, which selects the optimal wavelet transform for 

simulating groundwater fluctuations. Simulated values are 

compared with WLS-SVM results to assess the models' 

effectiveness. Statistical analysis confirms that the DWT-

ANN method achieves superior accuracy compared to 

previously established models, such as those by Ebrahimi et 

al. (2017) and Wei et al. (2023). 

 

MATERIALS & METHODS 

 

Study Area and Data 

The Bagheyn plain spans an area of 5420km2 and is 

situated between latitudes 29°47′ to 30°31′ N and 

longitudes 56°18′ to 57°37′ E in Kerman Province, 

southeastern Iran (Fig. 1). (Fig. 1). Approximately 50% of the 

plain is mountainous, contributing significantly to aquifer 

recharge. The region’s highest elevation, at 4,189 meters, is 

in the southwestern area, while the lowest elevation, at 

1,626 meters, is in the northeast. The general slope of the 

plain trends from south to northwest. Within the plain, there 

are 65 observation wells, of which three were selected for 

this study (Fig. 1). The studied aquifer is unconfined, with an 

alluvial thickness ranging from 100 to 250 meters. The 

groundwater level time-series in the 10-year study period 

shows that the amount of groundwater recharge in the area 

was almost constant, with no significant fluctuations 

observed. The survey of water level fluctuations shows that 

groundwater reaches its highest level in November and its 

lowest in June. The depth of the groundwater level in the 

plain varies from 9.13 to 170.89 meters as of August 2020). 

The aquifer exhibits hydraulic conductivity values between 

2 and 15 m/day and transmissivity coefficients of 200 to 

3,000m²/day. The storage coefficient also varies from at 

least 2% to a maximum of 20% in different sections of the 

plain. The average annual temperature for the Bagheyn 

plain ranges from 12.8°C to 15.6°C, with the average annual 

rainfall in this region ranging from 147 to 204.2mm at the 

Kerman station (during 2019). The annual precipitation 

occurs from December to April, with these five months 

accounting for 87% of the total annual precipitation.  

Given the region’s susceptibility to water shortages, 

groundwater serves as a critical resource for domestic, 

agricultural, and industrial purposes. Accurate simulation 

models are therefore essential for effective water resource 

management in the Bagheyn Plain. 

The study area and the locations of the three selected 

observation wells in the Bagheyn Plain shown in Fig. 1. For 

the simulation of groundwater levels, monthly piezometric 

head data from April 2009 to March 2019 (120 months) were 

collected from three selected observation wells.  

The data for the simulation was divided into two categories: 

training (75%) and testing (Fig. 2). 

Table 1 provides the summary statistics of groundwater 

levels recorded at the three observation wells during the 

study period. These statistics include details about the wells' 

locations and descriptive data such as the range and mean 

of groundwater levels. This breakdown ensures a 

comprehensive understanding of the dataset used for 

model development and evaluation. 

 
Table 1: Properties of observation wells' location and statistics of 

groundwater level in the Bagheyn plain during Apr 2009–Mar 2019. 

Well  

ID 

Wells name Wells' location Water table level (m) 

Longitude Latitude Min Max Mean SD 

1 Saadi 473500 3341500 74.38 88.45 81.38 4.00 

2 Dasht-Bagheyn 497200 3335750 56.41 63.46 60.31 2.12 

3 Tolombe Badi 514650 3341250 54.93 60.37 57.78 1.70 

 

Weighted Least Squares Support Vector Machines 

(WLS-SVM) 

Support vector machines (SVMs) have been 

successfully applied to numerous machine learning 

problems, including groundwater level simulation (Suykens 

et al., 2002). The weighted least squares support vector 

machine (WLS-SVM) introduced by Suykens et al. in 2002, 

has proven to be more robust than the least squares version 

of SVM (LS-SVM). The interesting research by Suykens et al. 

(2002) provides greater motivation for applying the WLS-

SVM method in groundwater level simulation. 

The WLS-SVM is characterized by an optimization 

function, which is defined in the primal weight space as 

follows (Suykens et al., 2002): 

min q (w, e) =
1

2
‖w‖2 +

1

2
γ ∑ vk

n
k=1 ek

2                                (1) 

Subject to 

yk = wTϕ(xk) + b + ek    k = 1. , n                                     (2) 

With {𝑥𝑖 , 𝑦𝑖}𝑘=1
𝑛  being a set of 𝑛 training samples, where 

𝑥𝑘 ∈ 𝑅𝑛 represents input vector data and 𝑦𝑘 ∈ 𝑅 is output 

data. Additionally, ϕ(. ): Rn → Rd is a function that maps the  
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Fig. 1: The study area and the 

locations of observation wells. 

 

 

input space into a higher dimensional feature space, w ∈ Rd 

is the weight vector in primal weight space, 𝑒𝑘 ∈ 𝑅 are error 

variables, b is the bias term, and γ is an adjustable constant. 

The weights 𝑣𝑘 are determined based on the relationships 

proposed by David et al. (1998). 

The model of WLS-SVM in the primal weight space is 

defined as follows:  

y(x) = wTϕ(x) + b                                                             (3) 

Due to the unknown structure of the function, it is not 

possible to calculate w from equation (1). Therefore, the 

model shown in equation (1) is calculated using the 

Lagrangian method as follows: 

L(w, b, e; x) = q(w, e) − ∑ αk
n
k=1 (wTϕ(xk) + b + ek − yk) (4) 

The solution can be derived from the Karush-Kuhn-

Tucker (KKT) conditions for optimality by eliminating 

variables w and 𝑒, resulting in the following system of linear 

equations: 

[
Ω + Vy 1n

T

1n 0
] [

a
b

] = [
y
0

]                                                        (5) 

where 

𝑉𝑦 = 𝑑𝑖𝑎𝑔{1 𝛾𝑣1. 1 𝛾𝑣𝑛⁄⁄ } 

 

              (6) 

Ωk,l = ⟨ϕ(xk), ϕ(xl)⟩H k, l = 1,2, . n 

y = [y1, . yn]T 

1n
T = [1. ,1]( 

𝑎 = [𝑎1. , 𝑎𝑛] 

 
 

   

 1 
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Fig. 2: Four-fold training and testing datasets. 

 

A kernel 𝐾(. , . )is selected according to Mercer's condition, 

such that: 

k(xk, xl) = ⟨ϕ(xk), ϕ(xl)⟩H                                                  (7) 

Consequently, the WLS-SVM model developed for function 

prediction is as follows: 

y(x) = ∑ αk
n
k=1 k(xk, x) + b                                                 (8) 

Where 𝛼𝑘 and 𝑏 are the solutions to the linear system. 

In the present study, the radial basis function (RBF) with the 

parameter σ was used as the kernel function.   

K(xi, xj) = exp( −
‖xi−xj‖

2σ2

2

)                                                  (9) 

Where 𝜎 is the kernel width. 

Several studies have demonstrated that the RBF kernel 

provides strong performance in simulating hydrological 

variables. It has also been used in recent studies for 

groundwater level simulation (Tang et al., 2019). 

 

Artificial Neural Networks (ANN) 

An artificial neural network (ANN) consists of nodes 

known as artificial neurons, which model the neurons in a 

biological brain. In the brain's process, myelinated axons 

and neurons connect inputs at dendrites to outputs at axon 

terminals with signal flow. The artificial neural network 

receives (Xi) as inputs, recognizes the activation, and 

produces outputs (Yi) depending on the input and 

activation. The multi-layer perceptron (MLP) employed in 

the research had three layers: input layer, hidden layer(s), 

and output layer. The chosen activation function for both 

the hidden and output layers was a tansig (Hyperbolic 

tangent sigmoid) function, which was determined to be the 

most effective through a process of trial and error. The 

Levenberg-Marquardt algorithm is used due to better 

performance and speed of training in the research. Each 

circular node symbolizes an artificial neuron, while an arrow 

indicates the connection from the output of one artificial 

neuron to the input of another (Fig. 4). The number of 

neurons in the hidden layer and delays were achieved using 

a trial-and-error approach and the data-series were 

categorized into three subsets: training, validation, and 

testing. Artificial neural networks have been proven to be 

beneficial tools for simulating future values based on past 

histories in the hydrological process (Nourani et al., 2014; 

Wunsch et al., 2021). 

In groundwater level forecasting, Xi represents n-

dimensional input vector of groundwater level values at 

different antecedent time lags and Yi is n-dimensional 

output vector of the groundwater level for a subsequent 

period at a well (Nayak et al., 2006). The ANN model for 

groundwater level simulation was developed utilizing the 

MATLAB R2022a software program. 

 

Wavelet Analysis 

The concept of wavelets was first proposed by Morlet 

and Meyer developed the methods of wavelet analysis. 

Recently wavelet transforms have been investigated as a 

powerful tool for the analysis and de-noising of time series 

data, providing accurate results in hydrological processes. 

The groundwater level time series can be denoted as 

{Xt: t = 1, . , n} where t represents the time index and n 

indicates the total number of groundwater level 

observations. If the time series properties do not change 

much over time, it is called a stationary signal. Groundwater 

level time series contain numerous nonstationary 

characteristics; thus, wavelets are ideal for studying 

nonstationary groundwater level data, where the mean and 

autocorrelation of the signal fluctuate over time.  

A mother wavelet 𝜓(𝑡) is a mathematical function with 

a zero average (Mallat, 1999).  

∫ ψ(t)dt = 0
+∞

−∞
                                                                 (10) 

The wavelet transform breaks down signals into dilated 

and translated wavelets. A mother wavelet 𝜓(𝑡) is a 

waveform of effectively limited duration and can be 

expressed as follows (Hajizadeh et al., 2016): 

ψs,u(t) =
1

√|s|
ψ(

t−u

s
)                                                          (11) 

Where s (s > 0) is a scaling parameter or a scale that 

measures the degree of compression and 𝑢 is the 

translation parameter that determines the time location of 

the wavelet. 

The wavelet transforms are divided into discrete 

wavelet transform (DWT) and continuous wavelet transform 

(CWT). 

The continuous wavelet transforms (CWT) of a function 

f(t) is described as follows: 

f(u, s) = ∫ f(t)
1

√s

+∞

−∞
ψ∗(

t−u

s
)dt                                            (12) 

Where ψ∗(𝑡) represents the operation of the complex 

conjugate. 

In the discrete wavelet transforms (DWT) concept, the 

scales s and u are considered as powers of 2 in the mother 

wavelet as follows: 

s = 2j;    u = 2jn;       j, n ∈ Z                                               (13) 

where Z is a set of integers. 

By substituting the parameter values 𝑢 and 𝑠 in Eq. (11), 

the discrete wavelet transform (DWT) is obtained as follows: 

ψj,n(t) =
1

√2
j ψ(

t−2jn

2j )                                                          (14) 

Where 𝑗 and n are the dilation and the translation 

parameters, respectively. 

The original signal S is processed through both low-

pass and high-pass filters and transforms the time series 

into approximation (A) and details (D) signals, respectively 

(Fig. 3). 

https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Brain
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Fig. 3: Wavelet 

decomposition of 

groundwater level time series 

using Db4 wavelet at level 

two. 

 

 

The selection of an appropriate efficient mother 

wavelet and decomposition level are two important issues 

in wavelet analysis. In the present study, the decomposition 

of the groundwater level time series was employed with the 

Daubechies mother wavelets (Db4), which was proven in 

past studies (Moosavi et al., 2013; Rajaee et al., 2019, 

Saroughi et al., 2024) to have a robust performance in 

simulating the hydrological process (Fig. 4).  

The decomposition level of the wavelet depends on the 

historical data length (Karthika et al., 2015; Nury et al., 2017; 

Shahbazi et al., 2023): 

𝐿 = 𝑖𝑛𝑡[𝑙𝑜𝑔 𝑁𝑆]                                                                 (15) 

Where 

L = decomposition level, 

NS= length of the time-series data 

 

The Proposed Hybrid Model of DWT–ANN 

Although ANN indicate significant performance in 

simulation, there are still drawbacks present in ANN. A 

problem with artificial neural networks is the presence of 

limitations when dealing with non-stationary data. 

Hydrological phenomena such as fluctuations in 

groundwater levels, are highly non-stationary. ANN models 

may not be able to accurately simulate hydrological time-

series (Adamowski et al., 2010; Cui et al., 2022). 

To enhance the accuracy of ANN, using wavelet 

transformation as a preprocessing method for time-

series data has been suggested by Bahmani et al. (2020) 

and Shahbazi et al. (2023). Wavelet transforms 

decompose the original time series, and they can be very 

beneficial for non-stationary data. In this study, a hybrid 

model combining of DWT with ANN, referred to as DWT-

ANN, proposed to resolve the aforementioned drawback. 

The Flow diagram of the DWT-ANN model is shown in 

Fig. 4. 

The implementation of the DWT-ANN model includes 

the following steps: 

Step 1: Select the original time series data (monthly 

groundwater level) and identify the length of historical data. 

Step 2: Calculate the number of decomposition levels 

using Equation15. 

Step 3: Utilize the mother wavelet (db4) to decompose the 

original time series data into approximation and details 

components (Fig. 4). 

Step 4: Enter the time-lagged series of approximation and 

details into the ANN as input data. 

Step 5: Use a trial-and-error approach to identify neurons 

in the hidden layer. 

Step 6: Divide the data into training and testing data (Fig. 2). 

Step 7: Run ANN code to predict the test series. 

This hybrid approach leverages the strengths of 

wavelet decomposition to preprocess the data, effectively 

removing noise and enhancing the ANN model's ability to 

handle non-stationary signals. By combining DWT and ANN, 

this methodology addresses the limitations of standalone 

ANN models and improves the simulation of groundwater 

level fluctuations. 

 

DWT–ANN Model Performance Evaluation 

Statistical indicators were calculated to determine the 

adequacy of the DWT-ANN method compared to the WLS-

SVM model, as one of the appropriately selected criteria. 

The mathematical expressions for these error estimates are 

presented in Equations (16) to (18). 

MAE =
1

n
∑ |Si − Oi|

n
i=1  Mean Absolute Error                   (16) 

RMSE = [
1

n
∑ (Si − Oi)

2n
i=1 ]

1

2
 Root Mean Squared Error    (17) 

NSE = 1 −
∑ (n

i=1 Si−Oi)2

∑ (Si−Oi)2n
i=1

 Nash–Sutcliffe Efficiency               (18) 

Where Oi and Si are observed and simulated value, 

respectively; and n represents the length of data. 

The best efficiency is achieved when MAE and RMSE are 

close to zero, and NSE is near to 1. Model efficiency (𝑁𝑆𝐸), 

as proposed by Nash and Sutcliffe (Duc et al., 2023), ranges 

from   0   to   1,  with  an  acceptable  level  of  performance.  
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Fig. 4: DWT-ANN model 

 

 

Additionally, the determination coefficient (R2) is the 

degree of collinearity between observed and simulated 

data. R2 also ranges from 0 to 1, with values greater than 0.5 

considered acceptable (Hlaing et al., 2024). 

The DWT-ANN method is used to evaluate monthly 

groundwater levels by training a novel method. To train the 

Artificial Intelligence model (AI), observed groundwater 

level data is broken down into two sub-series: 

approximations (A) and details (D). approximations A1, A2 

and details D1, D2 are employed as inputs for the hybrid 

model. The inputs from 75% and 25% of the data are then 

utilized to train and test the performance of the DWT-ANN 

method. 

RESULTS 
 

The simulated groundwater level values for the DWT-

ANN and WLS-SVM models were obtained at all three 

observation wells. The performance of both DWT-ANN and 

WLS-SVM models for the wells in terms of the three 

evaluation criteria provided in Table 2. Three criteria for 

performance evaluation, including MAE, RMSE and NSE 

were used to verify the robustness of the models. As shown 

in Table 2, both the DWT-ANN and WL-SSVM models had 

smaller values of MAE and RMSE at all three observation 

wells during the training phase compared to the testing 

phase. It seems logical that simulation models perform 

better in the training phase than the testing phase. 

Groundwater Level Time Series 

 

 

 

ANN 

 
 

 

 

 

Wavelet Transform 

 
db4 

Step1: Selection mother wavelet 

 
Step2:  The filtering process of wavelet transforms to approximations (A) and details (D) 

 
 

Step3:  Decomposition the original time series data to approximation and details components 

Groundwater Level Simulation 
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Across all wells, the minimum MAE and RMSE values 

achieved for DWT-ANN model at the Saadi well. The MAE 

and RMSE values were 0.044, 0.064 obtained for training 

phase respectively. The testing phase yielded the best 

results for the DWT-ANN model at the Tolombe-Badi well, 

with MAE and 𝑅𝑀𝑆𝐸 values of 0.133, and 0.168, 

respectively. These values demonstrate a nearly perfect fit 

between observed and simulated results. The results in 

Table 2 indicate that both models achieved good simulation 

accuracy, with 𝑅𝑀𝑆𝐸 values ranging from 0.168 for DWT-

ANN to 0.257 for WLS-SVM in the testing phase, indicating 

that the DWT-ANN model has superior simulation 

capability. 

A model can be considered accurate if the calculated 

𝑁𝑆𝐸 value is greater than 0.8 (Shu et al., 2008). It can be 

seen from Table 2 that the values of NSE for all cases are 

close to or above 0.8. Therefore, both the DWT-ANN and 

WLS-SVM models have good performance for simulating 

groundwater levels. NSE values also demonstrate 

satisfactory simulation accuracy, with DWT-ANN achieving 

the highest efficiency at 0.9998 (Fig. 5). At all three 

observation wells, higher NSE values and lower MAE and 

RMSE were observed for the DWT-ANN model compared to 

the WLS-SVM model. This outcome highlights the 

superiority of the DWT-ANN model over the WLS-SVM 

model, making DWT-ANN the most effective in simulating 

groundwater levels. 

The comparison of simulated and observed values using 

DWT-ANN and WLS-SVM for three selected observation 

wells were illustrated in Fig. 6. At the three selected 

observation wells, the simulated values for the DWT-ANN 

were closer to the observed values compared to WLS-SVM 

model. Additionally, Fig. 7 and Fig. 8 display the scatter plots 

of observed groundwater level value versus simulated 

groundwater levels at three selected observation wells  for 

DWT-ANN and WLS-SVM  models in training  and testing 

phases, respectively. R2 describes the degree of collinearity 

between observed and simulated data, ranging from 0.9363 

to 0.9976 for the DWT-ANN model and 0.8442 to 0.9944 for 

the WLS-SVM model in training and testing phases. The R2 

values for the DWT-ANN model at three selected 

observation wells are significantly higher than those for the 

WLS-SVM model, with the value of 0.9976 achieved at the 

Saadi well in training phase. Furthermore, the R2 values for 

both the DWT-ANN and WLS-SVM models in the training 

phase are higher than those in the testing phase at all three 

selected observation wells. Therefore, the DWT-ANN model 

is considered a more accurate model for simulating 

groundwater levels. The results of the DWT-ANN model 

showed a closer collinearity between the simulated and 

observed groundwater level values compared to the WLS-

SVM model. 

 

DISCUSSION 
 

The growth of urban populations in cities has resulted 

in a notable increase in water demand, especially for 

drinking purposes. However, the excessive exploitation and 

utilization of groundwater resources have led to an annual 

decline in groundwater levels. This problem of water scarcity 

is particularly prominent in arid and semi-arid regions (Zafar 

et al., 2023; Zafar et al., 2024). The Bagheyn Plain, located in 

Iran, is situated in the mid-latitude belt of semi-arid and arid 

regions of the Earth. Therefore, it has been selected for 

groundwater simulation in this study. Over the last two 

decades, numerous studies using various Artificial 

Intelligence (AI) methods such as Artificial Neural Networks 

(ANN) have been conducted to simulate groundwater 

levels (Bahmani & Ouarda, 2021). AI-models are capable 

of hydro-geophysical and topographical data. Due to  this 

 
Table 1: The statistical parameters of both models. 

Well ID Well Name Models Training Testing 

MAE(m) RMSE(m) NSE MAE(m) RMSE(m) NSE 

1 Saadi (DWT-ANN)  0.044 0.064 0.9998 0.241 0.257 0.9330 

WLS-SVM 0.061 0.086 0.9996 0.440 0.470 0.7752 

2 Dasht-Bagheyn (DWT-ANN)  0.059 0.010 0.9973 0.163 0.174 0.9251 

WLS-SVM 0.070 0.124 0.9959 0.212 0.258 0.8373 

3 Tolombe- Badi (DWT-ANN)  0.054 0.075 0.9954 0.133 0.168 0.8994 

WLS-SVM 0.069 0.097 0.9923 0.219 0.260 0.7582 

 

 
 

Fig. 5: Efficiency model (NSE) on the resulting groundwater level at the observation wells in DWT-ANN and WLS-SVM models; (a) Training phase, (b) Testing 

phase. 

  
(a) Training phase (b) Testing phase 
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Fig. 6: Comparison of the observed groundwater level and the DWT-ANN and WLS-SVM simulated groundwater level at (a) Saadi, (b) Dasht-Bagheyn and (c) 

Tolombe-Badi wells. 

 

ability, AI methods are more appealing compared to 

physically based and numerical methods. Since 

groundwater level fluctuations are a nonlinear phenomenon 

in the natural environment, it is necessary to consider robust 

models (Najafabadipour et al., 2022). 

However, ANN models have shown limitations with 

complex non-linearity and non-stationary time-series data 

such as groundwater level fluctuations as demonstrated by 

prior research (Kayhomayoon et al., 2021; Osman et al., 

2021; Cui et al., 2022); Therefore, there is a need for data 

transformation to improve hydrological non-stationary 

signals. Meanwhile, several studies have proven that wavelet 

data transformation is an effective method for removing 

noise from time-series data. They have also introduced the 

decomposed signal as an input variable to the AI models 

(Wu et al. 2021; Zhang et al., 2023; Wang et al., 2023). In the 

present study, the monthly groundwater level time-series of 

three observation wells in the Bagheyn plain during the time 

period of April 2009–March 2019 (120 months) were 

selected as input data for the model. According to the 

previous study (Shahbazi et al., 2023), 75% of the data were 

used for training and 25% were used for testing. Wavelet 

transform has two main forms: continuous wavelet 

transform (CWT) and discrete wavelet transform (DWT). 

However, in their 2019 review study, Rajaee et al. (2019) 

recommended using DWT for decomposing hydrological 

time-series data. In the present study, DWT was chosen for 

use in the hybrid model based on previous findings. 

According to previous studies on Wavelet-ANN models, the 

choice of the mother wavelet may impact the accuracy of 

hybrid models (Bahmani et al. 2020; Freire & Santos, 2020). 

Rajaee et al. (2019) recommended using the db2 and db4 

mother wavelets for analyzing groundwater level time-

series data due to their shapes. Furthermore, Wei et al. 

(2023) indicated that the Wavelet-ANN model with the db 

mother wavelet performed better than other mother 

wavelets for forecasting groundwater level. Moreover, 

Saroughi et al. (2024) emphasized that the Daubechies 

mother wavelets were the most appropriate wavelet for 

estimating groundwater level. In this study, based on 

previous findings, the db4 mother wavelet was chosen for 

use in the hybrid model.  

Additionally, the accuracy of hybrid models can be 

influenced by selecting the appropriate decomposition 

level. A high level of decomposition may not always be 

beneficial in improving the accuracy of the model; it is 

important to identify the optimal level of decomposition. In 

the present study, two decomposition levels are utilized 

based on the length of historical groundwater level data 

(Shiri et al., 2021). 

The use of wavelet transform for preprocessing 

groundwater level time-series data can improve the 

simulation accuracy of the ANN model. Considering all 

selected wells, the results of the present study indicate that 

the DWT-ANN performed better than the WLS-SVM model. 

The results of this study are agreed with those of several 

related studies. Graf et al. (2019) indicated the superior 

performance of the hybrid DWT-ANN model. Similarly, 

Freire & Santos (2020) demonstrated that combining ANN 

model with preprocessing tools like wavelet improved their 

performances. A study by Shahbazi et al. (2023) also 

supports  these findings,  emphasizing  that  hybrid  models  

 
 

(a) Saadi well 
 

 

(b) Dasht-Bagheyn well 

 
 

(c) Tolombe-Badi wells 
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Fig. 7: Scatter plot of observed groundwater level vs. the DWT-ANN and WLS-SVM simulated groundwater level in training phase at (a) Saadi, (b) Dasht-Bagheyn 

and (c) Tolombe-Badi wells. 

 

combining Wavelet with ANN significantly improve 

predictive performance for hydrological time series. 

Additionally, another relevant study by Samani et al. (2023) 

indicated that hybrid wavelet-machine learning conjunction 

models were superior to other stand-alone model to predict 

groundwater level. Similar to previous studies (Wei et al., 

2023), statistical indicators such as mean absolute error 

(MAE), root mean squared error (RMSE), and Nash-Sutcliffe 

efficiency (NSE) were calculated to evaluate the 

performance of the hybrid model. After considering the 

three statistical indicators (MAE, RMSE and NSE) and 

conducting visual analysis, it became clear that the DWT-

ANN model demonstrated improved performance. The 

RMSE values for the DWT-ANN model varied from 0.010 m 

to 0.075 m in the training phase and from 0.168 m to 0.257 

m in the testing phase. The MAE results also followed the 

RMSE indicator, and NSE values ranging from 0.9954 to 

0.9998 in the training phase and from 0.8994 to 0.9330 in 

the testing phase. These results establish the Wavelet-ANN 

combination as having the highest simulation accuracy. 

These findings are consistent with those reported by Wei et 

al. and Shahbazi et al. (2023), which revealed that the novel 

hybrid model combining wavelet with ANN is more accurate 

compared to other stand-alone models.  

 

 

 
(a) Saadi well 

 

 

 
(b) Dasht-Bagheyn well 

 

 

 
(c) Tolombe-Badi wells 
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Fig. 8: Scatter plot of observed groundwater level vs. the DWT-ANN and WLS-SVM simulated groundwater level in testing phase at (a) Saadi, (b) Dasht-Bagheyn 

and (c) Tolombe-Badi wells. 

 

According to the authors' literature review, the findings 

of this study were more accurate compared to those of 

previous studies. For instance, Wei et al. (2023) reported 

that the wavelet-ANN model for groundwater forecasting 

using the best Daubechies mother wavelet function, 

achieved an optimal RMSE of 0.562m and NSE of 0.990. In 

another related study, Shahbazi et al. (2023) reported a 

coefficient of determination (R2) of 0.984 and 0.938 in the 

training and testing phases for groundwater modeling using 

wavelet-ANN, respectively. In the present study, the R2 value 

for the DWT-ANN model ranged from 0.993 to 0.9976 in the 

training phase and from 0.9363 to 0.9925 in the testing 

phase. It is clear that the maximum R2 values (0.9976 in 

training and 0.9925 in testing phases) in the present study 

are higher than the indicator reported in the study by 

Shahbazi et al. (2023). Therefore, it can be concluded that 

the present hybrid model of DWT-ANN is a promising and 

robust tool for simulating groundwater levels.  

 

Conclusion 

Comparing the statistical indicators of both the DWT-

ANN and WLS-SVM models in the training and testing 

phases indicated that the DWT-ANN with Db4 mother 

wavelet was a more powerful tool for simulating 

groundwater levels than the WLS-SVM model. The 

performance evaluation results of the DWT-ANN and WLS-

SVM models indicate that the DWT-ANN model performs 

more efficiently than the WLS-SVM method. The discrete 

wavelet transform (DWT) can remove noise, making the 

hybrid model of DWT and ANN more accurate than the 

WLS-SVM method. The results indicate that the DWT-ANN 

method could be an accurate and reliable simulation tool 
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for groundwater levels. It can also handle the planning of 

water resources management strategies in arid area. Since 

fieldwork for groundwater monitoring projects is costly and 

time consuming, the hybrid simulation approach to 

groundwater levels proposed in this research can help 

reduce costs and provide accurate groundwater level 

simulations. It is noteworthy that the proposed hybrid 

method can simulate groundwater level with high accuracy. 

Therefore, the hybrid simulation approach for groundwater 

levels proposed in the research can enhance groundwater 

monitoring projects. 
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