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ABSTRACT  Article History 

Copper ferrite nanoparticles are widely studied for their biomedical applications; however, their 

potential toxicity to hematopoietic and dental tissues remains unclear. This study evaluates 

oxidative stress, antioxidative enzymatic contents, and histopathological alterations in albino 

rats exposed to copper ferrite nanoparticles. Male Wistar albino rats were divided into four 

groups: Group A (control, 0.0mg/kg), Group B (2.5mg/kg), Group C (5.0mg/kg), and Group D 

(7.5mg/kg) received copper ferrite nanoparticles intravenously for 15 days. Oxidative stress was 

assessed by measuring thiobarbituric acid-reactive substances (TBARS) and reactive oxygen 

species (ROS). At the same time, antioxidant defense was evaluated in terms of the estimation 

of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) contents. The results 

showed a dose-dependent increase in TBARS and ROS levels, indicating elevated oxidative 

stress, along with a significant decline in SOD, POD, and CAT contents, suggesting impaired 

antioxidant defense mechanisms. Histopathological analysis of teeth revealed structural 

alterations, including enamel erosion, dentin degeneration, and inflammatory changes, 

particularly at higher doses. The most severe oxidative and histopathological effects were 

observed in Group D (7.5mg/kg), indicating potential toxicity associated with exposure to 

copper ferrite nanoparticles. These findings suggest the need for further research on the long-

term effects of copper ferrite nanoparticles on erythrocytes, hematopoietic, and dental tissues, 

to ensure their safe biomedical use. 
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INTRODUCTION 
 

Nanotechnology has transformed numerous scientific 

domains by allowing for the manipulation of materials at the 

atomic and molecular levels. Among the diverse 

nanoparticles, metal oxide nanoparticles have gained a lot 

of attention for their distinct physicochemical features and 

potential biological uses (Nikolova & Chavali, 2020). Metal 

oxide nanoparticles (NPs) belong to a class of nanomaterials 

and are synthesized from silver, copper, magnesium, zinc, 

gold, titanium and alginate (Ghonimi et al., 2022). Among 

these,   copper   ferrite   (CuFe2O4)   NPs   have  attracted 

Considerable attention due to their remarkable magnetic 

catalytic, optical, and structural characteristics, making them 

promising candidates for applications in catalysis, magnetic 

storage, and biomedicine (Saikova et al., 2023). 
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Despite the advantageous properties of copper ferrite, 

concerns have emerged regarding its toxicological effects 

on biological systems. Nanoparticles may influence stress 

response mechanisms and interact with proteins in living 

organisms. Nanoparticle exposure can cause oxidative 

stress and disrupt proteins involved in stress response 

pathways (CAT, SODs, GPXs, GR, PRDXs, PDI and CAT). It is 

now widely accepted that manufactured NPs cause 

oxidative stress by producing damaging reactive oxygen 

species. Nanoparticles' propensity to create ROS is 

influenced by their physicochemical features, which include 

size, shape, structure, and metal contents (Cameron et al., 

2022). Increased oxidative stress is one of the most 

important processes in nanoparticle-induced toxicity, 

described as “a shift in the prooxidant or antioxidant 

balance in favor of the former” (Horie & Tabei, 2021). 

Enhanced levels of ROS lead to pathophysiological 

outcomes, including inflammation, DNA damage, and 

fibrosis, which can contribute to the development of various 

diseases, such as cancer, atherosclerosis, neurological 

disorders, autoimmune diseases, and type 2 diabetes (Xuan 

et al., 2023). Due to their small size, nanoparticles can pass 

through and traverse physiological barriers, traveling via the 

circulatory system to affect multiple tissues and thereby 

impact animal and human health (Ghonimi et al., 2022). 

Copper ferrite nanoparticles are frequently used in 

biomedicine, magnetic resonance imaging, magnetic cell 

separation, as well as energy storage devices, magnetic 

storage medium and spintronic and electromagnetic 

appliances (Saikova et al., 2023). Humans are at high risk of 

exposure to nanoparticles, which can enter the body 

through various pathways, including the digestive, 

respiratory, and skin systems, during the production, use, 

and disposal of nanoparticles. Once deposited in specific 

areas of the body, nanoparticles are transported to 

different tissues through the lymphatic or circulatory 

system. Due to their stability, nanomaterials persist in the 

body and environment for an extended period, with 

potential health repercussions from accelerated exposure 

to nanoparticles that are not yet fully defined. However, 

there is scarce evidence indicating possible toxic effects 

(Dobrzyńska et al., 2014). 

Earlier studies have demonstrated the harmful effects of 

copper ferrite nanoparticles in human cell culture, 

highlighting significant alterations in cellular morphology 

and survival (Ahmad et al., 2016). Additionally, a study on 

Wistar rats demonstrated that intraperitoneal injections of 

CuFe₂O₄ nanoparticles can disrupt antioxidant activities and 

blood plasma parameters in a gender-specific manner, 

indicating overall toxicity (Riaz et al., 2020). Exposure to 

metal oxide NPs, including silver and copper nanomaterials, 

has been shown to adversely affect survival, body weight, 

size and structure in aquatic species, signifying potential 

environmental and health hazards (Ostaszewska et al., 

2016). Erythrocytes are highly susceptible to nanoparticles, 

which can induce oxidative stress, thereby impairing their 

function and lifespan. This study investigates the oxidative 

stress induced by copper ferrite nanoparticles, as well as the 

antioxidant mechanism, particularly in erythrocytes and 

bone marrow, and the histopathological changes in the 

teeth of albino rats, aiming to gain a deeper understanding 

of the potential risks associated with their widespread 

applications and exposure. 

 

MATERIALS & METHODS 

 

This research was approved by the Board of Studies, 

Department of Zoology and Advanced Studies, and the 

Advanced Studies and Research Board, the Islamia 

University of Bahawalpur (IUB), Pakistan. 

 

Study Animal 

Research was conducted in the Animal Rooms at 

Baghdad ul Jadeed Campus, Department of Agriculture, IUB. 

Twenty male adult albino rats free of any clinical ailments 

were used in this study. The rats were obtained from IUB, 

Baghdad ul Jadeed campus (Pakistan). Each rat was housed 

in a metal wire cage with a regular dark/light interval and 

constant temperature. Water and food were accessible 

every day. The CuFe2O4 NPs were obtained from the 

Institute of Physics, IUB.  

 

Experimental Design and Treatment 

The rats were divided into four treatment groups: A, B, 

C, and D. Each group consisted of five rats. Group A was 

named the control group. All rats were fed commercial 

chicken feed. The weekly body weight of every male in each 

group was determined using a digital weight computerized 

weight balance. For 15 days, rats in categories B, C and D 

were given daily injections of CuFe2O4 NPs. Rats in group B 

were administered CuFe2O4 NPs at a dose of 2.5mg/kg BW. 

Rats in group C received 5.0mg/kg while rats in group D 

were administered CuFe2O4 NPs @7.5mg/kg BW. The 

nanoparticles were administered intraperitoneally daily for 

15 days. The rats were keenly observed daily. Sampling was 

conducted on days 5, 10, and 15 of the experiment. 

 

Sample Processing and Biochemical Analysis 

Erythrocytes and bone marrow cells were collected 

from all experimental rats at days 5, 10, and 15th of the 

research trial. The cells were then washed with phosphate 

buffer saline and lysed with distilled water to release their 

contents. The lysates were centrifuged at 3000rpm for ten 

minutes and the resulting supernatants were stored at -

20˚C. TBARS and ROS were measured at absorbance of 532 

and 505nm according to previous protocol (Akram et al., 

2021). Other parameters such as CAT, POD and SOD were 

measured at absorbance of 240, 470, and 560nm 

respectively, using ultraviolet spectrophotometer in 

erythrocytes and bone marrow of rats following the 

previous protocol (Ghazanfar et al., 2018). 

 

Histopathology Analysis 

For histopathological analysis, at day 15, the different 

teeth were carefully extracted from each rat. The teeth were 

fixed in 10% formalin. Following decalcification, the teeth 

were then embedded in paraffin and thin blocks and 

sections were cut using a microtome and stained using 

Hematoxylin and Eosin. These stained sections were 

observed for microscopic changes (Nursanti et al., 2017). 
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Statistical Analysis 

The collected data were statistically evaluated by using 

the ANOVA test with the IBM statistical software package 

(SPSS). Tukey’s test was employed to compare the means of 

oxidative and antioxidant factors between nanoparticles. 

P<0.05 was used as the level of significance. 

 

RESULTS 

 

Behavioral and Physiological Effects 

Rats given copper ferrite nanoparticles (CuFe₂O₄ NPs) 

during the experiment showed physiological changes 

including watery feces and signs of depression as well as 

behavioral changes like lethargy. On the other hand, the 

untreated control rats remained active throughout the trial. 

The administration of copper ferrite nanoparticles 

indicated no significant changes in body mass of each 

group. Rats in groups B, C and D did not exhibit progressive 

increase/decrease in body weight corresponding to the 

escalating dosages of copper ferrite nanoparticles (Table 1). 

 
Table 1: Body weight (g) of albino rats treated with different doses of copper 

ferrite nanoparticles 

Experimental Days A (0.0) B (2.5mg/kg) C (5.0mg/kg) D (7.5mg/kg) 

5 132.3±1.86 132.4±1.81 133.2±2.38 129.9±1.52 

10 133.2±2.61 131.3±3.60 131.1±1.24 128.4±1.40 

15 134.5±2.22 130.2±2.91 129.2±1.75 127.5±1.47 

 

Oxidative Stress and Antioxidant Response 

The levels of TBARS and ROS in erythrocytes were 

markedly different compared to the control group. 

Specifically, groups B, C and D exhibited notably higher 

TBARS and ROS levels than group A. The results also 

demonstrated a statistically significant variation in contents 

of POD, CAT and SOD in erythrocytes compared to control 

group. Groups B, C and D displayed significantly lower CAT, 

POD and SOD contents than the control group (Table 2). 

 

Table 2: Oxidative and antioxidant profile in erythrocytes of albino rats 

treated with different doses of copper ferrite nanoparticles 

Parameters/ 

Days 

Groups 

A (0.0) B (2.5mg/kg) C (5.0mg/kg) D (7.5mg/kg) 

Erythrocytes 

Reactive oxygen species (ROS) contents 

           5  0.58± 0.03 0.59±0.02 0.60±0.03 0.61±0.04 

          10 0.57±0.05 0.62±0.07 0.63±0.08 0.74±0.05* 

          15 0.58±0.04 0.63±0.04 0.69±0.06* 0.83±0.03* 

Thiobarbituric acid reactive substances (TBARS) content (nmol/TBARS 

formed/mg protein/min) 

         5 0.69±0.05 0.71±.0.04 0.73±0.03 0.74±1.42 

        10 0.67±0.04 0.72±0.02 0.75±0.03 0.86±0.08* 

        15 0.68±.0.07 0.73±0.06 0.82±0.08* 0.94±0.07* 

Antioxidant enzymes 

Superoxide dismutase SOD (units/mg protein) 

        5 0.34±0.06 0.32±0.08 0.31±0.04 0.29±0.07 

       10 0.35±0.05 0.31±0.03 0.28±0.04 0.27±0.02* 

       15 0.35±0.02 0.29±0.05 0.23±0.05* 0.21±0.02* 

Catalase CAT (units/min) 

       5 0.20±0.07 0.21±0.06 0.19±0.04 0.17±0.06 

       10 0.21±0.03 0.20±0.07 0.19±0.02 0.15±0.01* 

       15 0.21±0.05 0.19±0.05 0.16±0.03* 0.14±0.04* 

Peroxidase POD (units/min) 

       5 0.57±0.03 0.55±0.05 0.53±0.04 0.52±0.04 

      10 0.54±0.05 0.52±0.07 0.51±0.03 0.49±0.02 

      15 0.56±0.04 0.51±0.03 0.41±0.06* 0.36±0.07* 

Values (mean+SD) bearing asterisk within a row differ significantly (P<0.05). 

 

TBARS and ROS levels in bone marrow differed 

significantly from the control group. Groups B, C and D 

had higher ROS and TBARS levels than the untreated 

group. Groups B, C and D showed significantly reduced 

CAT level in rats administered higher doses of 

nanoparticles as compared to the control group. POD 

levels were significantly reduced in groups C and D relative 

to the control group. The lowest POD level was recorded 

in group D, which received the highest dose of CuFe₂O₄ 

NPs. The findings indicate a statistically substantial 

difference in SOD level compared to the control group. 

SOD level was notably lower in groups C and D relative to 

the control group (Table 3).  

 

Table 3: Oxidative and antioxidant profile in bone marrow of albino rats 

treated with different doses of copper ferrite nanoparticles 

Parameters/ Days Treatments 

A (0.0) B (2.5mg/kg) C (5.0mg/kg) D (7.5mg/kg) 

Bone Marrow 

Reactive oxygen species (ROS) contents (optical density) 

           5  0.34±0.02 0.37±0.07 0.38±0.05 0.41±0.09 

          10 0.34±0.04 0.38±0.09 0.39±0.04 0.51±0.05 

          15 0.33±0.03 0.41±0.06 0.48±0.02 0.55±0.05 

Thiobarbituric acid reactive substances (TBARS) content (nmol/TBARS 

formed/mg protein/min) 

         5 0.33±0.07 0.36±0.07 0.37±0.07 0.42±0.05 

        10 0.31±0.07 0.37±0.08 0.41±0.09 0.48±.0.04* 

        15 0.32±0.05 0.38±0.10 0.52±0.03* 0.62±0.02* 

Antioxidant enzymes 

Superoxide dismutase SOD (units/mg protein) 

        5 0.31±0.02 0.28±0.03 0.27±0.03 0.26±0.02 

       10 0.33±0.03 0.27±0.02 0.23±0.01* 0.21±0.02* 

       15 0.31±0.03 0.26±0.02 0.21±0.01* 0.19±0.03* 

Catalase CAT (units/min) 

       5 0.43±0.04 0.42±0.09 0.39±0.08 0.38±0.07 

       10 0.44±0.02 0.41±0.08 0.38±0.07 0.34±0.06* 

       15 0.45±0.02 0.39±0.07 0.33±0.06* 0.27±0.05* 

Peroxidase POD (units/min) 

       5 0.37±0.02 0.36±0.03 0.34±0.01 0.32±0.09 

      10 0.36±0.03 0.34±0.02 0.32±0.04 0.27±0.08* 

      15 0.36±0.04 0.33±0.08 0.26±0.07* 0.19±0.07* 

Values (mean+SD) bearing asterisk within a row differ significantly (P<0.05). 

 

Histopathology Evaluation 

Microscopic analysis of dental structures revealed 

normal histological structures of the teeth of rats of group 

A. However, rats of groups B and C treated with 2.5 and 

5.0mg/kg BW nanoparticles displayed mild and moderate 

microscopic changes in their teeth at days 5, 10, and 15 th 

of trial in groups B and C. These changes were pulp 

calcifications, inflammatory responses, changes in dentin 

bridge thickness, resorption of dentin, reduced 

vascularization in the pulp tissue, thickness of inner 

enamel epithelial cells, increased cellularity of fibrocytes, 

thickened periodontal tissue, periodontal tissue, necrosis 

of odontoblasts, elevated percentage of osteoclasts and 

delayed growth of the periodontal tissues. Conversely, 

mild to moderate effects were observed in the teeth of 

group B rats treated with 2.5mg/kg CuFe2O4 NPs. These 

alterations were severe in rats of group D at day 15 of trial 

(Table 4 and Fig. 1). 

 

DISCUSSION 
 

With the advancement of science and technology, as 

well as the rapid growth of nanotechnology, NPs are 

becoming increasingly prevalent in various fields such as 

medical, agricultural environment, energy production and 
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materials research. Different features including synthesis, 

characterization, size, nanocomposites, nanomaterials and 

route of exposure play important role in the pathogenesis 

of induction of toxic effects in target and non-target animals 

 
Table 4: Severity of histopathological ailments in teeth of albino rats treated 

with different doses of copper ferrite nanoparticles  

Histopathological Lesions                                        TREATMENTS 

A(0.0 

mg/kg) 

B(2.5 

mg/kg) 

C(5.0 

mg/kg) 

D(7.5 

mg/kg) 

Inflammatory reactions - ++ ++ ++++ 

Pulp calcifications - ++ ++ ++++ 

Increase in cellularity of fibrocytes - ++ +++ +++ 

Increased resorption of dentin - ++ ++ +++ 

Hyaline necrosis - ++ +++ ++++ 

Thickness of periodontal tissue - ++ +++ ++++ 

Necrosis of odontoblasts - ++ +++ ++++ 

Disrupted fibers - ++ ++++ +++ 

Decrease vascularization of pulp tissue - ++ +++ ++++ 

Decrease of the mineral contents  - ++ +++ ++++ 

Increased dentin bridge thickness - + +++ ++++ 

Elevated percentage of osteoclasts - ++ +++ ++++ 

 

 

 

Fig. 1: Photomicrograph of teeth of albino rats of group C (a) and D (b) 

treated with higher doses of nanoparticles at day 15 indicating various 

histopathological lesions. Dentin (D), increased osteoclast and resorption 

lacunae (red arrows), increased fibrocytes (*) disrupted fibers (DF), 

inflammatory material (black arrow), mononuclear cell infiltration (red and 

black arrow heads) increased thickness of peridentin (PD), necrosis of 

odontoblasts (blue arrow) and hyaline necrosis (HN). H & E stain; 400X. 

 

from the macroscopic to the microscopic level. Because 

of this shift in properties, NPs and nanotechnology are 

incredibly significant for a variety of applications including 

health management (Xuan et al., 2023). Copper ferrite 

nanoparticles (CuFe2O4NPs) are the most significant and 

important ferrites that exhibit point transitions, changes in 

semiconductor nature, tetragonality variation and electrical 

switching under various situations. Research on the 

potential hazards of spinel ferrite nanoparticles has grown 

considerably in recent years. Given their wide range of 

applications, it is crucial to evaluate their toxicity on 

different tissues. The extensive utilization of CuFe₂O₄ 

nanoparticles in biological fields has gained significant 

scientific interest; however, their associated toxicity and 

environmental risks must also be carefully considered 

(Srikanth & Nutalapati, 2022). 

Prolonged contact to nanoparticles presents potential 

risks to animal life and human health, requiring though 

assessment and examination of environmental pollutants 

to minimize their adverse impacts (Ali et al., 2024). 

Numerous studies have highlighted concerns regarding 

the deleterious effects of manufactured nanomaterials in 

living species primarily focusing on exposure levels (Anwar 

et al., 2023). A key issue is the induction of oxidative stress 

(Cao et al., 2020) in different tissues when exposed to NPs 

which are utilized in (Pandey & Saha, 2023), surface 

modification (Oliva et al., 2023), lubrication, stabilization, 

cellular delivery (Dang et al., 2014; Hasan et al., 2013) and 

energy harvesting (Samy et al., 2022). Due to their nanoscale 

dimensions and elevated surface area relative to volume, 

nanoparticles can interact with biological molecules 

(Hussain et al., 2023). They also readily penetrate nuclear 

and cell membranes, causing indirect damage such as 

oxidative stress and inflammatory responses (Hasan et al., 

2021; Javed et al., 2023; Zafar et al., 2020). 

Previously, potential concerns linked with the 

applications of nanomaterials, including genotoxicity 

mechanisms and health risks, have gained significant 

attention (Ghouri et al., 2023). These nanoparticles can 

generate reactive oxygen species either through direct and 

indirect pathways, leading to genotoxicity, cellular damage, 

and cell death (Huang et al., 2022; Huang et al., 2023). 

Numerous studies examining various nanomaterials such as 

copper iron oxide, calcium nanoparticles, copper 

nanoparticles, nickel-iron oxide, and zinc-iron oxide have 

reported harmful effects on multiple species, including 

human cells, primarily through the induction of oxidative 

stress. With nanotechnology rapidly advancing across 

medicine, industry and nutrition, understanding and 

mitigating these effects has become increasingly important. 

A previous study also reported an increase in ROS 

production as well as DNA damage on exposure to the ZnO 

nanomaterials (Iqbal et al., 2024). ROS levels in cells range 

from low to high, leading to a variety of effects, including 

apoptosis, autophagy, and necrosis (Younas et al., 2024). 

Different types of nanoparticles, insecticides and herbicides 

are known to trigger oxidative stress by generating 

intracellular reactive oxygen species (Horie & Tabei, 2021; 

Kanwal et al., 2024; Shafqat et al., 2024) 

The considerable rise in oxidative damage indicators 

and diminished levels of several antioxidant proteins in 

bone marrow and erythrocytes of CuFe2O4 nanoparticles 

exposed rats in this study might be attributed to the 

activation of an immune response (Zhuo et al., 2024). Earlier, 

different investigations (Srisuvetha et al., 2020; Zhuo et al., 

2024) demonstrated that interaction with nanoparticles 

stimulates NLRP3 complexes resulting in cellular 
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impairment and the activation of inflammatory processes in 

tissues producing oxidative stress. 

Therefore, oxidative stress, which elevates the 

production of reactive species and causes the death of 

numerous cellular organelles, may be the cause of the 

reduced levels of diverse antioxidant biomarkers in rats' 

teeth. According to several research in previously published 

literature, oxidative stress causes damage to various cells 

and can interfere with regular physiological processes, 

resulting in tissue necrosis through programmed cell death 

(Ali et al., 2024; Samim et al., 2023). 

There have been several histological abnormalities 

found in rats' teeth as a consequence of oxidative stress 

induction (Yaman et al., 2018). CuFe2O4 NPs may cause 

histological and oxidative illnesses in the current 

investigation due to excessive free radical release, 

antioxidant depletion and activation of signaling cascades. 

Free radicals have been shown to engage immediately with 

many micro and macromolecular structures, such as lipids, 

proteins and DNA present in different types of cells, 

resulting in oxidative stress-associated damages. The 

significantly elevated levels of oxidative stress indices 

(TBARS and ROS) in rat erythrocytes and bone marrow in 

this study show that CuFe2O4 NPs caused pathological 

alterations in cell membrane integrity, resulting in reduced 

antioxidant levels. 

Furthermore, it has been reported that oxidative 

damage caused by nanoparticles lowers the levels of 

enzymatic antioxidants, a widely recognized secondary 

defensive mechanism (Ghaffar et al., 2021; Sanati et al., 

2022; Wang et al., 2022). CAT and SOD neutralize 

superoxide free radicals and detoxify H₂O₂, whereas POD 

scavenges lipid hydroperoxides (Hussain et al., 2018; Kumar 

et al., 2023). Therefore, the reduction of these proteins 

produces oxidative impairments in various organs. 

Reactive oxygen species (oxygen-based free radicals) 

are highly reactive and can cause damage to various 

biological structures, including DNA. Bone marrow and 

erythrocytes are vital parts of the blood-forming system, 

and they are particularly vulnerable to reactive damage. 

Investigating the harmful effects of CuFe₂O₄ nanoparticles 

(NPs) is crucial to identifying possible hazards associated 

with their applications (Samy et al., 2022). Extensive 

research has explored the cytotoxic effects of these NPs 

using various animal models (Chong et al., 2021; Han et al., 

2016). While some investigations have demonstrated that 

these NPs exhibit dose-dependent cytotoxicity, others 

have reported minimal to no adverse effects on cells (Chen 

et al., 2019; Hanley et al., 2009; Namvar et al., 2015). Our 

results align with earlier research that has reported 

increased levels of oxidative stress indicators (ROS and 

TBARS) and reduced antioxidant enzymatic antioxidants 

activity in tissues such as the bone marrow and teeth. 

Histopathological examination of the treated rats' muscle 

(gum) tissues revealed atrophied cell, muscular fiber 

degeneration and the presence of inflammatory 

components (Mahmood et al., 2024). 

 

Conclusion 

This study demonstrates that copper ferrite 

nanoparticles induce oxidative stress and alter the 

antioxidant defense system in the erythrocytes and bone 

marrow of albino rats in a dose-dependent manner. The 

significant increase in TBARS and ROS levels, coupled with 

the depletion of antioxidative enzymes (SOD, POD and 

CAT), suggests that copper ferrite nanoparticles disrupt 

redox homeostasis, leading to oxidative damage. The 

highest dose (7.5mg/kg) exhibited the most pronounced 

toxic effects, indicating potential risks associated with 

prolonged or high-dose exposure. These findings 

highlight the importance of evaluating the 

biocompatibility and toxicity of copper ferrite 

nanoparticles before their biomedical applications. Further 

in-depth studies, including long-term exposure 

assessments and molecular mechanisms of toxicity, are 

essential to establish safe dosage limits and explore 

possible protective strategies against nanoparticle-

induced oxidative stress. 
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