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ABSTRACT  Article History 

Heavy metal contamination in aquatic ecosystems poses significant threats to aquatic 

organisms affecting their physiological and biochemical functions. This study evaluates the 

impact of aqueous nickel (Ni) and chromium (Cr) co-exposure on oxidative stress, antioxidant 

defense mechanisms, histopathological alterations, and metal bioaccumulation in brain and 

muscle tissues of Tilapia fish. Fish were divided into four groups: Group A (Control), Group B (Ni 

exposure), Group C (Cr exposure), and Group D (Ni-Cr co-exposure), and exposed to metals for 

a specific duration. Oxidative stress biomarkers, including thiobarbituric acid reactive 

substances (TBARS) and reactive oxygen species (ROS), were measured along with antioxidant 

enzyme contents such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and 

reduced glutathione (GSH). The results demonstrated a significant increase in TBARS and ROS 

levels, indicating oxidative stress, while antioxidant enzyme activities (SOD, CAT, POD, and GSH) 

declined significantly, suggesting impaired defense mechanisms. Histopathological examination 

revealed structural alterations in both brain (neuronal degeneration, necrosis of neurons, 

microgliosis, and vacuolization) and muscle (necrosis of myocytes, inflammation, and disorders 

in the arrangement of muscle fibers) in fish of the Ni-Cr co-exposure group. Metal 

bioaccumulation analysis showed a higher concentration of Ni and Cr in the brain compared to 

muscle tissue with the highest accumulation occurring in the combined metal exposure group. 

These findings highlight the toxic effects of Ni and Cr co-exposure in aquatic organisms, 

emphasizing the need for stricter pollution control measures to safeguard aquatic ecosystems. 
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INTRODUCTION 

 

 Aquatic species are at risk of extinction due to metal 

pollution and global climate change. Moreover, fish and 

their products are deemed unsafe for human consumption 

and their exports have declined due to both inorganic and 

natural pollutants (Kumar et al., 2023). Due to expansions 

in industries and technology, the concentration of heavy 
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metals in drinking water has surpassed the 

recommended thresholds set by global regulatory 

bodies. Contaminated drinking water remains the 

primary source of human exposure to heavy metals. The 

harmful effects of heavy metal contaminants including 

arsenic, lead, nickel, cadmium and mercury have 

increasingly drawn the attention of researchers. The 

general mechanism of heavy metal toxicity involves the 

generation of reactive oxygen species, leading to 

oxidative damage and subsequent detrimental health 

outcomes. Consequently, heavy metal-contaminated 

water significantly contributes to elevated morbidity and 

mortality rates worldwide (Fu and Xi, 2020). 

 Chromium, a prevalent and widespread metal 

pollutant in the environment (Bakshi and Panigrahi, 

2018) enters aquatic ecosystems through industrial 

effluents from sectors such as textiles, tanneries, mining, 

electroplating, dyeing, printing, photographic 

processing, pharmaceuticals, stainless steel production, 

and rubber manufacturing (Bakshi and Panigrahi, 2018). 

The accumulation of chromium (Cr) in various body 

organs poses significant risks to human health 

(Chakraborty et al., 2022). Cr adversely affects bronchial 

epithelial cells, potentially through the dysregulation of 

apoptosis-related proteins, cytoskeletal proteins, and 

proteins associated with energy metabolism (Xia et al., 

2022). Studies on the impact of Cr on fetal development 

during pregnancy suggest its toxic effects on fetal 

growth (Peng et al., 2018). Recognized as a carcinogen, 

Cr has been implicated in the onset of lung cancer 

(Baszuk et al., 2021). Additionally, exposure to elevated 

Cr levels can result in hyperpigmentation of the skin (Al 

Hossain et al., 2019). 

 Nickel is an essential metal for living organisms; 

however, both an excess and a deficiency of this metal 

can adversely affect the fitness of aquatic vertebrates. 

Additionally, nickel induces oxidative stress and elevates 

cellular reactive oxygen species, leading to DNA and lipid 

damage (Sun et al., 2020). Exposure to nickel has been 

linked to various health concerns, including 

carcinogenicity, hematotoxicity, developmental and 

neurotoxicity, reproductive toxicity, and hepato-renal 

dysfunctions. Furthermore, nickel toxicity is associated to 

the disruption of the physiological functions of essential 

elements such as zinc, manganese, magnesium, and 

calcium (Owumi et al., 2020). 

Previously, a study illustrated behavioral, histological 

and immunological alterations caused by Cr exposure, and 

its detrimental impact on fish health (Bakshi and Panigrahi, 

2018). Similarly, few studies have reported that nickel 

exposure results in histopathological alterations, enzymatic 

disturbances and oxidative stress in various tissues of fish 

including the muscles, gills and liver (Jayaseelan et al., 

2014). The combined effects of heavy metals have become 

an increasing issue, as co-exposure to metals like Cr and Ni 

can have synergistic or antagonistic consequences on fish 

biology. A previous study on wild and farmed tilapia 

demonstrated the buildup of heavy metals including Cr 

and Ni muscles of fish. This study highlight the concerns 

about food safety and human health risks due to the 

transfer of these metals through the food chain (Simukoko 

et al., 2022). The effects of chromium on protein 

metabolism in fish brain and muscle tissues showed 

decreased protein activity and elevated amino acid levels 

emphasizing the substantial metabolic disturbances 

caused by chromium contamination (Palaniappan and 

Muthulingam, 2016). These earlier findings highlight the 

urgent need to explore the chronic effects of chromium 

and nickel co-exposure on vital fish tissues such as the 

brain and muscle to gain a deeper understanding of the 

mechanisms of toxicity. Such investigations are essential 

for formulating approaches to mitigate heavy metal 

pollution in aquatic environments and ensuring the health 

of both aquatic life and the human population. 

 

MATERIALS & METHODS 

 

Experimental Organisms and their Management 

 The present experiment was carried out at the 

Department of Zoology and the Department of Pathology, 

The Islamia University of Bahawalpur (Pakistan). A total of 

80 Tilapia fish, weighing between 85 to 100g body weight, 

were purchased from a local fish breeding facility and 

allowed a two-week acclimation period. During this time, 

they were fed a commercial pelleted fish diet consisting of 

22% crude proteins and groundnut oil cake. The feed, 

equivalent to 2-3% of fish’s body weight was administered 

twice daily. This research work was approved by board of 

studies of department of zoology. 

 

Study Design and Treatment Protocols  

 After the acclimatization period, the fishes were 

divided into four equal groups (A-D) in glass aquarium. 

Each aquarium contained 100L of water and each group 

had 20 fish. Group A was named the as the control group. 

Group B was exposed to Ni (1mg/L), group C to Cr 

(10mg/L), and group D to a mixture of both metals for a 

duration of 21 days. The fishes were monitored daily for 

any physical or behavioral changes. The metals were 

administered in the form of metallic salts (NiCl₂, CrCl₂). 

 

Sample Processing and Biochemical Analyses 

 For biochemical analysis the brain and muscles were 

collected from each fish at days 7, 14 and 21 of trial and 

were placed in deionized water. After that the tissues were 

minced to obtain a homogenate. The homogenates were 

centrifuged at 6000rpm for 10min, and the resulting 

supernatants were stored at ‒20˚C. The reactive oxygen 

species (ROS) and TBARS were measured at absorbance of 

505nm and 532nm while POD, SOD, CAT and GSH were 

measured at absorbance of 470, 560, 240, and 412nm 

respectively using an ultraviolet spectrophotometer in 

accordance with the previous protocol (Ghazanfar et al., 

2018; Alam et al., 2025).  

 

Digestion Process and Metal Analysis in Fish 

 The tissues were collected at day 7, 14, and 21 and 

then were stored at ‒20˚C for estimation of heavy 

metals. For acid digestion, nitric acid (65%) and 

perchloric acid (60%) were mixed in a specific ratio to 
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the samples for 4-5hours. The samples were heated on a 

hot plate at 200˚C for approximately 30min. The samples 

were cooled to room temperature and then filtered. The 

filtered samples were diluted with distilled water for 

further analysis. The heavy metals were measured with 

help of an acetylene air flame atomic absorption 

spectrometer (AAS) (Naz et al., 2023).  

 

Histopathological Assessment 

 For histopathological analysis, the brain and muscle 

tissues of the fish were collected at day 21 of study. The 

tissues were preserved in a 10% formalin solution 

followed by dehydration with ascending grades of 

alcohol and then cleared in xylene. The tissues were then 

embedded in paraffin wax, sectioned using a microtome 

and stained with Hematoxylin and Eosin. These sections 

were mounted on slides for microscopic examination 

(Nursanti et al., 2017). 

 

Statistical Evaluation 

 The data collected in this study were expressed as 

mean±SE. Statistical analysis was conducted using one-

way analysis of variance (ANOVA) in IBM SPSS statistics 

software (version 20). Differences in mean values were 

identified through post hoc Tukey’s test with significance 

at P<0.05. 

 

RESULTS 

 

Histopathological Abnormalities 

 No mortality or behavioral and physical changes 

were observed in the fish of the control group. However, 

in fish treated with metals in mixtures exhibited increased 

surface breathing, tremors of fins, jerking movement and 

lying on one side. 

 In the muscles (Fig. 1) more pronounced 

histopathological changes were observed in co-exposure 

including inflammatory cell infiltrate, degeneration of 

muscle fibers, edema and intrafiber necrosis as compared 

to the individual metal and control groups. Microscopic 

examination of the brain (Fig. 2) of fish reared in individual 

metal groups such revealed mild to moderate changes 

(cytoplasmic vacuolization, necrosis of neurons, and 

congestion) while whereas severe histopathological 

changes were observed in the metal mixture group as 

shown in Table 1. 

 
Table 1: Severity of histopathological ailments in brain and muscle of 

Tilapia Fish treated with different heavy metals  

Histopathological lesions Groups 

A (Ctrl) B (Ni) C (Cr) D (Ni-Cr) 

Brain     

Necrosis of neurons - + ++ ++++ 

Enlarged cytoplasm of vacuolization - ++ +++ +++ 

Neurons with Eccentric nuclei  - ++ ++ ++++ 

Microgliosis - + ++ +++ 

Muscle 

Atrophy of Myocytes - + + +++ 

Degeneration of Muscle Fibers - ++ ++ +++ 

Edema - ++ + +++ 

Myofibrillosis - ++ ++ +++ 

Inflammatory Cell Infiltration  - ++ ++ +++ 

Necrosis of Myocytes - + ++ ++++ 

Normal (-), mild (+), moderate (++), Severe (+++) ,  very severe (++++). 

 
 

Fig. 1: Microscopic section of muscles of Tilapia Fish treated with different 

heavy metals (mixture metals) showing disruption and breakdown of 

muscles fibers (*) and necrosis of myocytes (arrows). H & E stain; 400X. 

 

 
 

Fig. 2: Microscopic section of brain of Tilapia Fish treated with different 

heavy metals (mixture metals) showing atrophy and degeneration of 

neurons (arrows black), microgliosis (*) eccentric nuclei of neurons (arrows 

blue) and enlarged cytoplasm of neuron (arrow head). H & E stain; 400X. 
 

Oxidative Stress and Antioxidant Capacity 

 In the muscle, the activity of ROS and TBARS increased 

significantly in fish reared in metal co-exposure group 

compared to the single metal exposure and the control 

group on day 21. The results on the antioxidant enzymes 

(SOD, POD, and CAT) showed a significant decrease on day 

21 in group D compared to group A. The activity of GSH 

decreased significantly in fish of group D compared to 

group A on day 21. 

 In the brain, the activity of ROS and TBARS increased 

significantly on day 21 in group D compared to normal 

group A. The results regarding the antioxidant enzymes 

(SOD, POD and CAT showed a significant decrease in fish 

of metal co-exposure group compared to the single metal 

and the control group on day 21. The activity of GSH 

decreased significantly in fish of group D compared to 

groups A, B, and C on day 21 as shown in Table 2.  

 

Metal Accumulation in Fish Tissues  

 The quantity of heavy metals like nickel and chromium 

was more pronounced in the brain than in the muscle 

tissue of fishes. Greater bioaccumulation of metals 

occurred in the combined metal group compared to the 

single metal groups as shown in Table 3. 
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Table 2: Oxidative and Antioxidant profile in brain and muscles of Tilapia 

Fish treated with different heavy metals 

Parameters/Days  Groups 

A (Ctrl) B (Ni) C (Cr) D (Ni-Cr) 

Brain 

ROS (Optical density) 

7  

14  

21 

0.37±0.03 0.38±0.04 0.39±0.02 0.41±0.02 

0.38±0.02 0.40±0.03 0.41±0.01 0.43±0.04 

0.39±0.01 0.41±0.02 0.43±0.03 0.51±0.01* 

TBARS (nmol/TBARS formed/mg protein/min) 

7  

14  

21 

0.25±0.04 0.27±0.02 0.28±0.01 0.29±0.03 

0.26±0.03 0.28±0.01 0.29±0.02 0.31±0.04 

0.27±0.01 0.30±0.04 0.32±0.03 0.41±0.02* 

GSH (μmol/g tissue) 

7  

14  

21 

0.39±0.01 0.38±0.03 0.37±0.01 0.36±0.02 

0.38±0.02 0.36±0.02 0.35±0.04 0.33±0.03 

0.37±0.03 0.33±0.04 0.32±0.03 0.26±0.04* 

Antioxidant enzymes 

SOD (units/mg protein) 

7  

14  

21 

0.27±0.03 0.26±0.04 0.25±0.01 0.23±0.02 

0.26±0.02 0.25±0.02 0.24±0.04 0.20±0.03* 

0.25±0.01 0.24±0.03 0.22±0.03 0.12±0.01* 

POD (units/min) 

7  

14  

21 

0.22±0.04 0.21±0.03 0.20±0.02 0.19±0.04 

0.21±0.03 0.20±0.02 0.18±0.03 0.15±0.03* 

0.20±0.02 0.18±0.01 0.17±0.04 0.13±0.01* 

CAT (units/min) 

7  

14  

21 

0.29±0.03 0.28±0.04 0.27±0.03 0.26±0.01 

0.28±0.02 0.27±0.03 0.25±0.04 0.23±0.03 

0.27±0.01 0.25±0.02 0.22±0.01 0.14±0.02* 

Values bearing asterisks in the row significantly increased or decreased as 

compared to the normal group. 

 
Table 3: Metal accumulation in brain of Tilapia Fish treated with different 

heavy metals 

Concentration/Days 

 

Groups 

A (Ctrl) B (Ni) C (Cr) D (Cd-Ni) 

Brain 

Chromium 

 7 ND - 11.36±5.84 11.87±6.80 

 14 ND - 14.53±7.80 20.31±8.83 

 21 ND - 19.16±10.28 29.20±12.11 

Nickel 

 7 ND 4.78± 0.66 - 6.49±0.76 

 14 ND 6.36± 1.50 - 8.54±1.59 

 21 ND 8.31±2.05 - 11.33±2.09 

 

Table 4: Metal accumulation in muscles of Tilapia Fish treated with different 

heavy metals 

Concentration/Days 

 

Groups 

A (Ctrl) B (Ni) C (Cr) D (Cd-Ni) 

Muscle 

Chromium 

 7 ND - 1.27±0.50 2.29±0.70 

 14 ND - 2.08±0.82 2.58±0.94 

 21 ND - 2.68±0.79 3.80±1.02 

Nickel 

 7 ND 0.46±0.23 - 0.73±0.28 

 14 ND 0.74±0.26 - 0.92±0.21 

 21 ND 1.15±0.56 - 1.88±0.68 

 

 The results revealed that the metal mixture increased 

the buildup of metals in fish tissues. Additionally, the 

results showed that, over time, the quantity of metals 

increased in fish tissues, leading to greater accumulation 

by day 21 as shown in Table 4. 

 

DISCUSSION 

  

 Heavy metal (HM) pollution poses a serious threat to 

plants, animals, aquatic ecosystems, and public health. 

Because of their high stability, bioaccumulation and 

biomagnification qualities, HMs have become a major 

environmental concern in aquatic habitats. These metals 

enter ecosystems through both natural processes and 

human activities. The toxicity of heavy metals endangers 

the long-term viability of the aquaculture sector by 

impairing fish growth, reproduction, and general 

physiological function. Exposure to heavy metals in various 

forms can cause environmental risks which may impact the 

human health through direct poisoning or inducing 

negative effects (Qiao et al., 2021; Wang et al., 2024). 

 Excessive discharge of industrial effluents 

(pesticides, fungicides, herbicides and heavy metals) 

causes a serious threat to aquatic environment, domestic 

animals and public health (Hussain et al., 2018; Ghaffar 

et al., 2021a; Hussain et al., 2022). In aquatic animals 

such as fish some heavy metals can also have mutagenic 

(Jamil Emon et al., 2023) and carcinogenic (Kortei et al., 

2020) effects. Heavy metals and other environmental 

effluents can result in oxidative stress, genotoxicity, 

structural damage, biochemical and functional problems, 

and deadly disease in the kidneys, liver, reproductive, 

respiratory, and neurological systems (Ghaffar et al., 

2021b; Haseeb et al., 2022).  

 Contact with heavy metals like chromium and nickel 

disrupts the balance between the generation of ROS and 

the protective mechanisms leading to oxidative stress. ROS 

are bioactive molecules that naturally occur as byproducts 

of a series of processes starting with the metabolism of 

cellular oxygen (Nakamura and Takada, 2021; Alam et al., 

2025). The conversion of electrons to oxygen on the inner 

mitochondrial membrane naturally produces these ROS, 

that engage in the cellular electrons (Bekhet and Eid, 2021; 

Rauf et al., 2024; Ahmad et al., 2025).  

 Heavy metal pollution increases ROS production 

through a variety of methods. Exposure to HMs has been 

shown to affect cellular redox status and mitochondrial 

electron transport, resulting in increased ROS generation 

(Eskander and Saleh, 2020). Furthermore, heavy metals 

including Cd, As, Fe, Cu, Ni, Pb, Cr, and Hg may react with 

nuclear proteins and DNA to produce reactive radicals 

that can harm cells and reduce enzyme activity through 

lipid peroxidation (Younas et al., 2024). Studies have 

demonstrated that Cr and Ni exposure induced oxidative 

stress by regulating antioxidant enzyme activities, 

resulting in significant reductions in SOD, CAT, and GSH 

activities in fish. The levels of TBARS and ROS were 

significantly higher in the fish of the metal mixture group 

compared to the individual metal groups. The elevation 

of ROS can be detrimental and lead to oxidative stress 

resulting in numerous disorders (Gul et al., 2024; Alam et 

al., 2025; Hussain et al., 2025). As previously mentioned, 

oxidative stress occurs when the body's antioxidant 

defense systems and ROS production are out of balance 

(Wang et al., 2020; Nakamura and Takada, 2021; Naz et 

al., 2025). This disruption of the oxidation-reduction 

(redox) equilibrium results in damage to molecules 

(Checa and Aran, 2020; Saeed et al., 2025). Furthermore, 

the generation of ROS damages DNA, lipids, and proteins 

within cells, which can result in cell damage and even 

cancer (Kanwal et al., 2024; Gul et al., 2025). 

 The peroxisomal enzyme catalase (CAT) breaks down 
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hydrogen peroxide into water and oxygen (Sznarkowska et 

al., 2017; Lee et al., 2023). The first line of defense against 

oxygen toxicity is SOD and CAT activity which may assist to 

keep normal physiological functions in balance by 

neutralizing ROS (Qu et al., 2014). GSH interacts with many 

environmental contaminants and metals providing fast 

protection against oxidative stress through the GSH redox 

cycle, immediately detoxifying the ROS produced by 

hazardous compounds (Kanak et al., 2014). 

 The release of industrial effluents, such as heavy 

metals, insecticides, fungicides and herbicides, induces 

oxidative stress, and disrupts antioxidant enzyme activity in 

fish damages their organs, causes serious harm to living 

organisms (Iqbal et al., 2024). A study on goldfish 

(Carassius auratus) exposed to chromium reported a 

notable decrease in these antioxidant enzymes, signifying 

oxidative stress and potential tissue damage (Velma and 

Tchounwou, 2010). Moreover, nickel exposure has been 

linked with oxidative stress in aquatic animals. Research 

shows that Ni accumulates in fish organs, leading to 

increased ROS generation and subsequent reduction of 

antioxidant protective mechanisms. A study on the impacts 

of heavy metals including nickel on fish reported changes 

in antioxidant enzyme activities, pointing to oxidative harm 

(Garai et al., 2021). Similarly, in the current study, the 

activity of antioxidant enzymes such as SOD, CAT, and POD 

was significantly reduced in the metal mixture group 

compared to single metal groups. The level of GSH was 

also significantly reduced in the combined metal group 

compared to the alone groups. 

 Heavy metals induce histopathological changes in 

different fish, which correlate with the distribution of these 

metals in various fish organs (Bibi et al., 2021; Onita et al., 

2021). Histopathological changes were observed in 

muscles and brain due to the combined exposure to the 

metals. Histopathological changes observed in muscles 

and brain tissues in our study could be due to rapid and 

increased generation of oxidative stress. Previous studies 

have also reported that nickel and chromium induced 

significant histological changes in different fish organs, 

affecting the overall health of fish (Velma and Tchounwou, 

2010; Garai et al., 2021). 

 Fish are considered as one of the foods at the top of 

the food pyramid. As a result, they are vulnerable to the 

biomagnification of HMs and are likely to as act as carrier 

for heavy metals to humans (Kumar et al., 2024). Human 

consumers are exposed to the detrimental effects of heavy 

metals (HMs) when they accumulate in seafood 

(Umeoguaju et al., 2022). For this reason, fish are often 

used as important biological markers to analyze metal 

levels in their environments and assess the environmental 

and health risks associated with human-generated waste 

discharge (Naz et al., 2023).  

 Because HMs can build up in fish bodies, they can 

easily enter the human body through seafood eating, 

leading to both short-term and long-term health 

problems (Bakhshalizadeh et al., 2022). HMs can enter the 

human body through the skin, inhalation, or digestive 

tract (contaminated food and drink) (Witkowska et al., 

2021). Therefore, the type of HM and how it enters the 

body determine how quickly it is absorbed by the human 

body. For instance, eating tainted fish causes HMs to build 

up in the human body (Alam et al., 2023), which can lead 

to immune system breakdown, severe dysfunction, and 

malnourishment (Mehnaz et al., 2023). Additionally, 

among other organs in the human body, HMs have an 

impact on the kidneys, brain, nerves, liver, skin, and heart 

(Mitra et al., 2022). 

 Fish tissues, such as muscles, gills, intestines, liver, and 

kidneys, may accumulate large amounts of heavy metals 

(HMs) based on exposure time, metal concentrations, and 

other environmental parameters like pH, temperature, 

salinity, and metal hardness (Dhaneesh et al., 2012). The 

structures and activities of enzymes, proteins, hormones, 

and other chemicals can be affected or altered by these 

heavy metals' interactions with biological particles that 

include sulfur, nitrogen, oxygen, and other components. 

This can eventually cause harm to fish tissues and organs 

(Shahjahan et al., 2022). In present study, the accumulation 

of metals (Cr and Ni) also observed in muscles and brain. 

The accumulation of metals observed to be higher in co-

exposure group. 

 

Conclusion 

 This study demonstrates that exposure to nickel (Ni) 

and chromium (Cr), both individually and in combination, 

induces significant oxidative stress, disrupts antioxidant 

defense mechanisms, and causes histopathological 

damage in the brain and muscle tissues of Tilapia fish. The 

increase in oxidative stress markers (TBARS, ROS) and the 

depletion of antioxidant enzymes (SOD, CAT, POD, GSH) 

indicate an imbalance in redox homeostasis. 

Histopathological analysis revealed severe structural 

alterations, including neuronal degeneration, vacuolization, 

muscle fiber atrophy, and inflammatory responses, with 

the most pronounced damage observed in the Ni-Cr co-

exposure group. Furthermore, metal bioaccumulation 

analysis showed a higher retention of Ni and Cr in the 

brain compared to muscle tissue, with the greatest 

accumulation occurring in the combined exposure group. 

These findings highlight the potential ecological risks 

associated with heavy metal contamination in aquatic 

environments. The study underscores the need for 

stringent environmental regulations and pollution control 

strategies to mitigate heavy metal contamination and 

protect aquatic life. Future research should explore the 

long-term effects of metal exposure and assess potential 

mitigation strategies to reduce toxicity in aquatic 

ecosystems. 
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