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ABSTRACT

Global seafood demand continues to rise, driven by increasing population, urbanization, and
growing health awareness, with global seafood consumption at around 20.5 kg per capita.
Overfishing, pollution, and climate change threaten wild fish stocks, driving aquaculture to the
forefront of ensuring seafood security. Aquaculture now accounts for over 50% of global fish
production and plays a critical role in alleviating pressure on wild fisheries resources.
Technological advancements, including improved breeding, enhanced feed efficiency, and
improved disease management, have contributed significantly to the growth of aquaculture.
However, challenges such as disease outbreaks, environmental sustainability, and economic
viability persist. Fish hybridization offers a promising solution, enhancing traits like disease
resistance, growth rates, and adaptability to fluctuating environments. Recent studies have
shown that hybrid fish outperform wild types in these areas, reinforcing the sustainability of
aquaculture systems. Nonetheless, stringent management and monitoring are required to
mitigate potential risks, such as unintended release of genetically distinct hybrids and
ecosystem disruption. As aquaculture continues to evolve, hybridization is expected to play a
crucial role in addressing global food security and meeting the increasing demand for
sustainable seafood. This paper reviews success stories in fish hybridization, examines
prevailing constraints and challenges, and outlines priority research avenues and policy
directions for the field.
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INTRODUCTION aquaculture in ensuring seafood security.
In recent years, aquaculture has played a crucial role in

ensuring seafood security by addressing several challenges

The global demand for seafood continues to rise due

to increasing consumer interest. According to the FAO
(2020), per capita fish consumption increased from 9.9 to
20.5 kg by 2018, and this trend is expected to persist,
driven by growing awareness of the health benefits of
seafood and the need to sustain a growing global
population. However, wild fish stocks are under significant
pressure from pollution, climate change, and overfishing.
The FAQ's 2020 report on the State of World Fisheries and
Aquaculture highlights that nearly one-third of global fish
stocks are overexploited, emphasizing the crucial role of
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in the global fish supply. As wild fish stocks face intense
pressure from pollution, overfishing, and fluctuating
climate conditions, aquaculture offers a sustainable
alternative to meet the growing demand for seafood.
According to the FAO (2020), aquaculture now contributes
more than 50% of the fish consumed worldwide, making it
a key player in global food production. This sector has
benefitted from technological advancements, such as
improved breeding techniques, better feed efficiency, and
enhanced disease management.
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However, aquaculture still faces significant challenges,
including disease outbreaks, environmental sustainability,
and long-term economic viability. Fish hybridization has
emerged as a promising solution to address these issues,
aiming to improve productivity, resilience and
sustainability in aquaculture (Lorenzen et al., 2012; Mitra et
al, 2023). Researchers from various fields are working to
enhance aquaculture production, focusing on creating
viable progeny with desirable traits to boost resilience and
adaptability to the unpredictable ecological changes
(Roberts et al., 2010; Masuma & Aoki, 2023; Ye et al., 2024).

Global Demand for Seafood

FAO (2020) reported that seafoods demand is
anticipated to rise by 50% by 2050, driven by increasing
population, urbanization and incomes especially in Asia
and Africa. The COVID-19 pandemic has underscored the
need for robust food systems, with aquaculture proving
essential in sustaining seafood supply chains during
disruptions (Love et al, 2021; Kelling et al., 2023). This
escalating demand underscores the urgent need for
sustainable aquaculture practices that can meet
international seafood demands while  minimizing
environmental impacts (Micheli et al, 2014; Ababouch et
al, 2023). However, attaining this demand poses a major
challenge, for instance, ecological and biodiversity
degradation, depletion of wild fish stock, and
vulnerabilities in the supply chain (Mangano et al., 2022;
Beaugrand et al.,, 2010). Concurrently, fluctuations in the
ecological climate, such as changes in ocean acidity and
temperature, lead to disruptions in the distribution of
marine species and food webs, affecting biodiversity
(Beaugrand et al., 2010; Albouy et al., 2014; du Pontavice et
al, 2019; Hodapp et al., 2023).

Overfishing

Human activities, such as overexploitation and
ecosystem disturbances, have triggered significant
ecological degradation and biodiversity loss. Overfishing,
both of targeted and non-targeted species, is a major
challenge to food security, contributing to unsustainable
fisheries in marine ecosystems and coastal communities
(Coll et al.,, 2008; Cheung et al., 2025). Overfishing remains
a critical threat to global fish stocks, with the FAO
reporting that 34.2% of fish stocks are currently overfished
(FAO, 2020). The overexploitation of wild fish stocks has
led to unsustainable fisheries and failures in fisheries
management systems (Hilborn et al.,, 2003; Bastardie et al.,
2024). In response, governments are developing more
comprehensive management frameworks that focus on
holistic ecosystem approaches and species conservation
(Murawski, 2000; Naylor et al, 2023). Recent findings
indicate that climate change exacerbates the depletion of
wild fish populations, affecting fish reproduction,
distribution, and growth rates (Free et al., 2019; McKenzie
et al, 2021). This persistent decline underscores the
growing importance of the aquaculture sector as a
sustainable alternative to meet global seafood demands.

Aquaculture Growth
Aquaculture has emerged as a sustainable solution to
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the depletion of wild fish stocks. It involves the cultivation
of fish, invertebrates, and aquatic plants for human
consumption. According to the FAO (2022), aquaculture
production has seen significant growth, increasing from
approximately 15 million tons to over 90 million tons
between 2000 and 2020. This growth has been driven by
advancements in feed technology, selective breeding
programs (Abwao et al, 2021), improved cultivation
management techniques, and genetic enhancement (Lu et
al. 2019; Manan et al., 2023; Flourizel et al., 2023). As a
result, the aquaculture sector plays a crucial role in
mitigating the overexploitation of wild fish stocks by
contributing to the global food supply chain.

Furthermore, FAO (2020) reported that aquaculture
production increased annually by 5.8% from 2000 to 2018,
reaching an international  production level of
approximately 114.5 million tons. With this rapid
expansion, the industry is incorporating advancements
from various disciplines to further enhance production.
Recent innovations, such as the application of
biotechnology, the integration of mechanization, and
advanced farming systems, have significantly contributed
to the efficiency and sustainability of the aquaculture
sector (Gladju et al.,, 2022).

Challenges in Aquaculture

The aquaculture industry faces numerous challenges,
such as disease outbreaks (Murray & Peeler, 2005; Leung &
Bates, 2013; Sanches-Fernandes et al., 2022), environmental
degradation (Pérez, 2003; Martinez-Porchas et al, 2012;
Sampantamit et al, 2020; Chiquito-Contreras et al,, 2022),
and the high costs associated with feed (Suleiman &
Rosentrater, 2018). Disease management remains a
significant concern, with recent studies indicating a rise in
antibiotic-resistant pathogens within aquaculture systems
(Miranda et al,, 2013; Hossain et al., 2022). Furthermore, the
environmental impacts of aquaculture, including habitat
destruction, water pollution and reliance on wild fish for
feed production, have raised sustainability concerns
(Beveridge et al, 2018; Verdegem et al, 2023). One
promising solution is the development of fish hybrids,
which can enhance the resilience and productivity of
farmed fish, reduce the dependency on chemical inputs,
and improve the overall efficiency of aquaculture systems
(Lorenzen et al., 2012; Zhang et al., 2023).

Fish Hybridization

Fish hybridization has long been practiced, involving
the intentional crossing of different species or genera to
produce offspring with enhanced traits (Alm, 1955; Hubbs,
1955; Rahman et al. 2013; Adah et al.,, 2014; Semeniuk et
al, 2019). Hybridization can be classified into two types:
interspecific, where fish from different species within the
same genus are crossed, such as the brown-marbled
grouper (Epinephelus fuscoguttatus) and giant grouper (E.
lanceolatus) (Ch'ng & Senoo, 2008) and intergeneric, which
involves crossing fish from different genera, like the
sympatric kirikuchi char (Salvelinus japonicus) and the red-
spotted Masu salmon (Oncorhynchus masou macrostomus)
(Sato et al., 2008).



Despite its potential, fish hybridization faces biological
challenges, including sperm recognition barriers,
difficulties with sperm-egg penetration, and complications
in pronucleus formation (Su et al, 2016; Lu et al., 2023).
Researchers have developed strategies to overcome these
issues, with hybridization becoming increasingly adopted
in aquaculture to improve growth rates, enhance disease
resistance, and increase adaptability to environmental
changes. Recent advancements in genomic technologies
and selective breeding have expanded the potential for
hybrid fish breeding, making it a critical tool for enhancing
aquaculture's contribution to global food security (Yue &
Wang, 2017; Mushtaq et al., 2025).

Hybridization allows for the precise control of genetic
traits, with modern molecular biology and genomics
enabling the development of hybrids with specific
desirable characteristics (Yue & Wang, 2017). These
advancements have made hybridization an essential
technique for improving the sustainability and
performance of farmed fish. Artificial hybridization has also
gained traction as an adaptation mechanism in fields such
as ecology, conservation, and evolution, helping species
adapt to fluctuating environments and promoting
ecosystem resilience (Krasnovyd et al.,, 2020; Bartley, 2021).
Studies show that hybrid fish often exhibit greater genetic
variability, making them more resilient to stressors such as
ocean acidification, climate change, and salinity
fluctuations (Jones et al.,, 2018; Sundin, 2023).

Environmental changes have driven the evolution of
species, but some now face endangerment due to these
pressures. Fish hybridization offers a solution by creating
offspring with greater adaptability to environmental
challenges, such as improved growth and disease
resistance (Lorenzen et al, 2012). These hybrids are
valuable in sustainable aquaculture practices (Kamal &
Mair, 2005; Sonesson et al, 2023), especially as the
aquaculture industry seeks ways to meet rising demand for
protein while managing ecological impacts.

Hybridization also plays a role in conservation by
restoring genetic diversity in endangered species through
the introduction of strains well-adapted to fluctuating
native habitats (Reisenbichler et al, 2003). However,
hybridization carries risks, such as potentially harming local
native species and leading to genomic extinction in some
cases (Muhlfeld et al, 2014). Researchers emphasize the
need for careful monitoring and management of hybrid
populations to prevent negative impacts on wild
populations (Harbicht et al., 2014; Hoffmann et al., 2021).

Traditionally, selective breeding for broodstock has
focused on selecting desirable morphological traits, which
is time-consuming and uncertain in its outcomes. In
contrast, hybridization offers a more efficient method for
increasing genetic diversity and improving traits in
progeny (Harbicht et al., 2014; Salgotra and Chauhan
2023). Early hybridization efforts in aquaculture, such as
tilapia (Oreochromis spp.) hybrids (Pullan & Smith, 1987),
have paved the way for more recent developments, like
the hybrid catfish (Ictalurus punctatus x Ictalurus furcatus),
which has gained widespread adoption in the U.S. due to
its superior growth rates and disease resistance (Dunham
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et al,, 2020).

Fish hybridization, which began as a scientific curiosity
in the 1880s (Green, 1881; Day, 1882), has evolved into a
critical tool for aquaculture and conservation. Early
experiments by Alm (1955) on the Salmonidae family laid
the foundation for modern hybridization techniques.
Although initial hybrids were often less viable than
purebreds, continued research has addressed challenges
such as hatchability, larval development, and growth rates
(Blanc and Chevassus, 1979; Chevassus, 1979). Today,
hybridization is recognized as a valuable method for
enhancing aquaculture productivity and ecological
resilience (Salgotra and Chauhan 2023).

Fish Hybridization Techniques

Numerous studies on fish hybridization have been
conducted to advance the aquaculture industry. The
primary objective is to enhance specific desirable traits,
such as disease resistance, adaptability to diverse
ecological and biological environments, lower feed
conversion ratios and improved growth and survival rates
(Devlin et al., 2015; Robinson et al., 2017; Cook et al., 2000).
In earlier decades, fish hybridization primarily focused on
broodstock selection and induced breeding through
artificial insemination, but managing desirable traits from
broodstock proved challenging. However, with the
complexities of genetic variation, researchers have
adopted innovative approaches, introducing genetic
engineering as a solution (Munday et al., 2013; Jones et al,,
2018). The use of genetic engineering, particularly CRISPR-
Cas9, has been successfully implemented in hybrid fish
breeding to enhance specific traits and develop improved
strains, contributing to the growth of innovative
aquaculture (Lu et al, 2021; Roy et al, 2022). This paper
explores the techniques used in fish hybridization for
aquaculture.
Genetic and of Fish
Hybridization
Genetic Diversity

Due to the depletion of wild fish stocks, genetic
biotechnologists have developed new variations that
improve growth rates, disease resistance, and adaptability
to environmental fluctuations. These enhanced traits, often
referred to as hybrid vigor, are the result of increased
genetic diversity. Hybrid vigor, or the superiority of hybrid
offspring over their parental species, is well-documented,
with hybrid progeny exhibiting better qualities than their
parents (Devlin et al., 2015; Robinson et al., 2017; Cao et
al, 2022). The increased genetic diversity offers significant
advantages for breeding programs by enabling the
manipulation of desirable traits to improve stock quality
(Zhang et al, 2023). However, while hybridization can
increase genetic diversity, improper management can lead
to inbreeding depression, where backcrossing with
parental species can result in reduced fitness, lower
reproduction rates, and genetic expression issues (Reed et
al, 2015). Therefore, effective breeding strategy
management is essential to limit the risks and maximize
the benefits of hybridization (Luo et al., 2014).

Biological Implications



Over time, the genomes of fish hybrids may be subject
to genetic drift, which results from random changes in
allele frequencies and genome segregation. This drift can
alter the genetic population and impact the ecological
performance and biodiversity of hybrid fish (Devlin et al.,
2015; Robinson et al., 2017). In aquaculture, hybridization
enhances genetic diversity, contributing to increased
resilience in the face of environmental fluctuations and
biodiversity changes. Hybrid populations have been shown
to be more resilient to diseases and environmental
changes due to their greater genetic variation (Sonesson et
al, 2023). Recent studies confirm that hybrid fish often
possess greater genetic variation than purebred strains,
which improves survival and adaptability to changing
environments (Zhu et al., 2021). This genetic diversity is
critical for maintaining robust and productive aquaculture
systems, as it enables populations to adapt to emerging
challenges like climate change and new diseases.

Growth Rates and Efficiency

One of the key advantages of hybrid fish breeding is
the potential for enhanced growth rates and improved feed
conversion efficiency. Recent studies have shown that hybrid
tilapia (Oreochromis spp.) exhibit faster growth and greater
efficiency compared to purebred strains, making them a
more cost-effective choice for aquaculture operations (El-
Sayed & Kawanna, 2021). Likewise, newly developed carp
hybrids (Cyprinus carpio x Carassius auratus) have
demonstrated superior growth performance and increased
disease resistance, further highlighting the potential of
hybridization to boost productivity in aquaculture (Zhang
et al., 2020; Salgotra and Chauhan 2023).

Disease Resistance

Hybridization in fish increases resistance to diseases,
reducing the reliance on antibiotics and other chemical
interventions. Recent research has shown that hybrid fish
may be more resilient to common aquaculture related
diseases, such as bacterial infections and parasites
(Miranda et al, 2013). For instance, a study on hybrid
grouper (Epinephelus lanceolatus x E. coioides) found that
the hybrid offspring demonstrated significantly higher
resistance to Vibrio spp. infections compared to their
purebred counterparts (Sun et al, 2021). These results
suggest that hybrid fish breeding could play a crucial role
in minimizing the environmental impact of aquaculture by
reducing the need for chemical interventions.

Despite these advantages, many questions about
hybridization in aquatic animals remain unanswered. Why is
biotechnology increasingly being applied in hybridization?
What are the primary goals of hybridization, and what
effects does it have on aquatic life? How do hybrid and
genetically modified aquatic animals compare to their
parent species in terms of resilience to environmental
fluctuations? The answer lies in the numerous benefits of
hybrid vigor (Ye et al, 2024). Hybrids are often
characterized by faster growth, higher disease resistance,
resilience under environmental stress, and improved
antioxidant and immune capacity (Mitra et al., 2023; Franke
et al, 2024). Due to their adaptability to fluctuating
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conditions, several species, such as zebrafish, have been
introduced (Stickney et al., 2002; Zon & Peterson, 2005).

Previous studies have shown that zebrafish possess
morphological and physiological traits that are remarkably
like mammals, making them valuable in genomic research
and pharmaceutical applications. Their adaptability and
ability to perform large-scale phenotype-based screenings
make them ideal for such purposes (Ton et al., 2002; Zon &
Peterson, 2005). These characteristics are vital for
producing high-quality offspring to meet the growing
demand for food production. The desirable traits in
hybrids encourage aquaculturists to increase hybrid
production to address the shortage of aquatic life (Bartley
et al, 2020). As a result, many new hybrid species have
been introduced into aquaculture for human consumption
(Olesen et al., 2003).

However, due to the unclear long-term effects of
hybridization, many consumers prefer purebred fish over
hybrids. Despite this, hybrids offer promising opportunities
for high-quality production due to their rapid growth, high
survival rates, and disease resistance (Krasnovyd et al,
2020; Bartley, 2021). Previous research indicates that
hybrid populations can exhibit enhanced antioxidant and
immune capacities, allowing them to better adapt to
varying environmental conditions, such as salinity
fluctuations (Ye et al.,, 2024).

Environmental Adaptability

Recent study has identified fish hybrids as a key factor
with significant potential for resilience in fluctuating
environments. These hybrids, which are often classified as
genetically modified organisms (GMOs), possess a wide
range of genetic variability, making them more resilient to
ecological stressors such as ocean acidification (Jones et
al., 2018; Sundin, 2023). Ocean acidification, which is on
the rise, has a profound impact on aquatic life by altering
the chemical composition of seawater and disrupting the
physiological processes of many marine organisms
(Sundin, 2023). This change disrupts normal metabolic
functions and buffering capacities, thereby enhancing
metabolic processes and increasing survival rates in certain
species (Servili et al.,, 2023).

Some marine species exhibit a higher degree of
resilience than others. For example, a previous study has
shown that Atlantic salmon and brown salmon hybrids
demonstrate greater adaptability to pH fluctuations
compared to purebred species (Bryden et al, 2004).
Similarly, Mustafa et al. (2013) found that hybrid groupers
are more tolerant of ocean acidification than their
purebred counterparts. These hybrids, therefore, display a
greater capacity to adapt to climate change, exhibiting
better endurance under stress compared to purebred
species (Ye et al., 2024). Studies on hybrids in invertebrates
have also reported better adaptability than purebreds
(Salgotra and Chauhan 2023).

Water quality, which includes biological, chemical, and
physical parameters, is crucial in aquaculture systems.
Dissolved oxygen (DO) is a particularly vital component.
Rapid depletion of DO can lead to hypoxia, which induces
stress in fish, suppresses immunity, and can even result in



death (Abdel-Tawwab et al, 2019). Research has shown
that hypoxia can make fish more vulnerable to diseases
(Moyson et al., 2015; Wang et al., 2023). However, Lee et al.
(2024) observed that hybrid progenies exhibit higher
survival rates compared to purebreds due to their superior
ability to manage stress. Additionally, Roberts et al. (2010)
discussed how hybrids could potentially replace obligately
estuarine fish in nature. Therefore, cultivating hybrid
species in controlled, closed-water systems is essential to
harness their desirable traits and potential to replace
natural species (Allendorf et al., 2001).

Economic Viability of Hybrid Fish

Hybrid fish offers numerous advantages, including
higher survival rates, improved feed conversion ratios,
enhanced adaptability to environmental conditions,
greater disease resistance, faster growth rates, and
significant cost reductions related to feed and disease
management (Faudzi et al., 2017; Shapawi et al, 2018;
Ahmed et al, 2019). Studies suggest that hybrid fish
farming can be more profitable than purebred farming,
especially regarding disease and feed management, due
to hybrids' ability to thrive in fluctuating environments,
which increases vyields in aquaculture production.
However, hybrid fish farming requires proper regulatory
oversight, practical measures, and appropriate post-
harvest handling to ensure sustainability and market
success (Zhou & Gui, 2018). Innovations in aquaculture
have further enhanced efficiency, with hybrid breeding
providing economic  benefits through improved
productivity, higher market demand, disease resistance,
and resource efficiency.

Hybrids often exhibit faster growth rates than their
purebred counterparts. For example, a study on walleye
and sauger hybrids demonstrated faster growth
compared to purebreds, a trend seen in several other
species as well (Giudice, 1966; Malison et al, 1990;
Rosenfield et al., 2004; Nielsen et al., 2010). These growth
advantages lead to higher productivity and vyield in
aquaculture. Additionally, hybrids tend to display greater
disease resistance, as seen in hybrid chinook salmon,
which showed improved resistance to diseases without
significant differences in genetic diversity (Semple et al.,
2021). Numerous studies support the observation that
hybrids have superior disease resistance compared to
purebreds (LaPatra et al, 1996; Bakke et al., 1999;
Bunlipatanon & U-Taynapun, 2016; Simkové et al., 2022).
This increased resilience, coupled with better feed
conversion ratios, means hybrid fish require less feed,
resulting in greater resource efficiency and lower costs
related to disease management and feed.

Investing in hybrid fish breeding involves three main
areas: initial investment, genetic management, and
marketing. The initial investment includes breeding facility
costs, training, and acquiring broodstock. Genetic
management is essential to prevent negative impacts on
native species and biodiversity, while marketing strategies
ensure the commercial success of hybrids by considering
consumer  preferences and safety concerns. A
comprehensive cost-benefit analysis is crucial for
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evaluating the feasibility of hybrid fish breeding, factoring
in initial investments, operational costs, market prices, and
other variables (Salgotra and Chauhan 2023).

Hybridization is a promising solution to address
sustainability challenges in fisheries, particularly those
caused by overfishing. Hybrids offer improved traits, such
as faster growth, better disease resistance, and adaptability
to environmental changes, which support market feasibility
and help meet the growing demand for protein sources
(Brown & Day, 2002). Global fish demand has increased,
driven by population growth and consumer interest in
healthy lifestyles, with a projected 1.5% annual rise in fish
consumption through 2030 (FAO, 2020).

Consumers increasingly prefer hybrid products over
purebreds because of their superior quality and
sustainability. Market research indicates that consumers
favor premium seafood products with high nutritional
value and health benefits. For example, genetically
improved tilapia has demonstrated better fatty acid
metabolism, resulting in improved growth and nutritional
quality (Ng & Hanim, 2007; Teoh et al, 2011). Hybrid
tilapia have successfully penetrated global markets due to
their taste, texture, and nutritional value, while hybrid
catfish have gained popularity in the U.S. market,
appreciated for their consistent quality and availability
(Kumar et al., 2008; Stankus, 2010; Sun et al.,, 2022).

Hybridization contributes to the efficiency of fish
farming by offering better growth rates, survival, and
disease resistance compared to purebred species. These
traits help reduce production costs and enhance
profitability, supporting sustainable aquaculture practices
(Dee et al., 2022). Genetically improved strains, such as
hybrid tilapia, have demonstrated superior growth,
survival, and adaptation to environmental stresses, making
them a viable economic choice for aquaculture (Prabu et
al, 2019; Zhao et al., 2020). Hybrids also exhibit greater
resistance to diseases, reducing mortality rates and the
need for antibiotics, further lowering costs related to
disease and water management (Cai & Ma, 2004; Zabidi et
al., 2021). Some examples of fish hybrids across fish family
produced for aquaculture are summarized in Table 1.

Environmental and Ethical Considerations
Environmental Impacts

Releasing hybrid fish into natural environments may
pose risks to native populations by introducing new
competition for resources and causing genetic pollution
(Alves et al., 2007; Laikre et al., 2010; Erarto & Getahub,
2020). Recent studies have raised concerns about the
potential for hybrid fish to interbreed with native species,
which could lead to the loss of unique genetic traits and
disruption of local ecosystems (Arthington, 1991; Laikre et
al., 2010; Bradbeer et al., 2019). However, advancements in
technology, such as the development of sterile hybrids,
have reduced the threat of genetic contamination, making
fish breeding a more environmentally sustainable option
(Bradbeer et al., 2019). These innovations highlight the
importance of responsible breeding practices and the need
for stringent regulations to safeguard natural ecosystems
(Naish et al., 2007; Reid et al., 2018; Jolly et al., 2023).
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Table 1: Summary of hybrid fish produced for the aquaculture industry

Family Hybrid name Parent species Key traits References
Moronidae Hybrid Morone chrysops @ x  Hybrids exhibited higher growth rates but demonstrated lower survival at the lowest Tuncer et al.
Striped Bass  Morone saxatilis & feeding level due to excessive cannibalism. Hybrids showed significantly lower (1990)
metabolic energy expenditure and utilized food more efficiently than purebred. Showed
higher growth efficiencies (12-15% higher), food conversion ratios. Hybrids exhibited
lower metabolism (by 10-14%) and higher growth energy (by 10-14%)
Ictaluridae Hybrid catfish Channel catfish, blue  F2 hybrid females had a significantly lower ovulation rate (12.2%) compared to channel Dunham &
catfish, and their F1 catfish, blue catfish, and F1 hybrids (83.5, 58.4, and 56.5%, respectively). F2 hybrids Argue
and F2 Hybrids produced fewer eggs per kilogram of body weight (923 eggs/kg) than the other groups (2020)
Use genus and (channel catfish: 7,893; blue catfish: 5,600; F1 hybrids: 5,676). F1 hybrids had smaller
species name testes relative to body weight compared to channel catfish but not blue catfish.
consistently Fertilization rates were highest in channel catfish eggs (73.6%), while F3 hybrid eggs had
much lower fertilization rates (5.1%). F1 hybrids rarely laid eggs when backcrossed to
parent species, and F2 hybrids did not spawn naturally in various environments,
indicating reproductive breakdown and difficulties in backcrossing.
Hybrid catfish Ictalurus punctatus @ x At low densities, channel catfish fry grew faster than hybrid catfish fry. However, the Dunham et
I. furcatus & hybrid catfish exhibited superior growth at higher densities, surpassing both channel al. (1990)
and blue catfish in growth performance. Hybrid catfish demonstrated greater survival
rates than channel catfish, particularly under conditions of stress such as oxygen
depletion and bacterial infections.
Ictalurus punctatus @  F1 hybrids had higher growth rates, reaching an average weight of 666 grams compared Argue et al,,
x |. furcatus & to channel catfish (577 grams) and blue catfish (396 grams). Growth performance (2014)
declined in later hybrid generations (F2, F3). F1 hybrids grew faster in high-density
environment. backcross hybrids with parental species showed poorer growth
performance.
Ictalurus punctatus @  Hybrid Catfish demonstrated better growth performance compared to purebred. Fantini-
x |. furcatus & Survival rate higher for hybrids (75-97%) than purebred (67-94%). Hybrids reached Hoag et al.
higher harvest weight (671-825g) compared to purebred (525-8219) (2022)
Portunidae Hybrid  mud S.olivacea @ x S. The hybridization between S. paramamosain and S. tranquebarica resulted in fecundity Gunarto et

Pleuronectidae

Acipenseridae

Cyprinidae

Cichlidae

Percidae

Percidae

crab tranquebarica &
Hybrid Pleuronectes
yellowtail ferrugineus ? x
flounder Pleuronectes
americanus &
Hyrbid Acipenser Baerii x
Sturgeon Acipenser
gueldenstaedtii
Hybrid Acipenser baerii @ x A.
sturgeon gueldenstaedtii &
Hybrid carp ~ female grass carp
(Ctenopharyngodon

idella) X male carp
(Cyprinus carpio,
Israeli mirrow variety)
Hybrid grass Ctenopharyngodon
carp idella x
Hypophthalmichthys
nobilis
Hybrid carp  Ctenopharyngodon
idella x Aristichthys
nobilis
Hybrid carp  Cyprinus
carpio X Carassius
gibelio

Hybrid  Nile Oreochromis niloticus
Tilapia x O. mossambicus)

Hybrid Tilapia Oreochromis niloticus
x Oreochromis
mossambicus &
Oreochromis
mossambicus x
Oreochromis niloticus

Hybrid Stizostedion vitreum x

walleye S. canadense

Hybrid walleye 9 x sauger S.

walleye canadense o

ranging from 32,200 to 1,868,000 eggs, with a hatching rate between 2 and 45.8%. The al. (2020)
hybridization of S. olivacea with S. tranquebarica resulted in a 98% hatching rate.

Production of viable offspring (crablets) in interspecific hybridization is lower compared

to intraspecific mating.

Despite the successful creation of hybrids, the gonad development in the hybrid fish Park et al.
was abnormal. Many hybrid individuals exhibited underdeveloped gonads or did not (2003)
reach reproductive maturity, suggesting potential fertility issues with the hybrids. This

could limit their ability to reproduce naturally in the wild or in aquaculture settings.

The survival rate of diploid hybrids was relatively high, with no significant difference Fopp-Bayat
compared to pure Siberian sturgeon. The mortality rate of triploid hybrids was et al. (2022)
approximately twice as high as that of diploid hybrids, indicating that triploidization

negatively affected the viability of the hybrids.

Excessive protein in the diet (beyond 400 g/kg) resulted in decreased growth, poorer Guo et al.

protein utilization by the hybrids. (2012)
Hybrid died during embryonic development Stanley
(2011)

hybrid grass carp exhibited slow growth and high mortality rates. Hybrid grass carp Osborne
consumed less vegetation and had a significantly lower feeding rate than grass carp. (2011)
hybrids exhibited physical deformities such as spinal curvature, enlarged guts, and

misshapen heads.

hybrid grass carp larvae exhibited very low survival rates (1-3%), despite achieving Opuszynski
decent growth (84-212mg) over 13 days. The high mortality of hybrid larvae was et al. (1985)
attributed to genetic abnormalities resulting from hybridization.

The hybrids exhibited intermediate traits between the two parental species, both Simkova et
morphologically and physiologically. This included intermediate glucose and cholesterol al. (2015)
levels, as well as an intermediate intestine-to-body size ratio, suggesting hybrid vigor in

terms of food utilization, metabolism, and energy intake. hybrids demonstrated higher
gonado-somatic indices (GSI) than common carp.

The study observed that hybridization between male Nile tilapia and female Sarker et al.
Mozambique tilapia resulted in an all-female F1 generation. (2024)

Hybrids of O. mossambicus x O. niloticus showed positive heterosis on weight gain and Kamal and
biomass gain but low FCR. Hybrids of O. niloticus x O. mossambicus showed low Mair (2005)
spawning frequency. Hybrids superior for salinity. Potential for brackish water culture.

Hybrids had more severe erosion of pectoral and pelvic fins than walleyes. Hybrid more Clayton et
susceptible to columnaris disease caused by Flexibacter columnaris al. (1998)
Both walleyes and hybrids had high survival rates, with over 90% survival during the Siegwarth &
126-day study. Hybrids grew faster than walleyes at lengths under 325mm, but walleyes Summerfelt
reached the minimum market weight (681g) 31 days sooner than hybrids. (1993)



Hybrid
walleye

Pangasiidae Hybrid catfish

walleyes (Stizostedion
vitreum) and saugers
(S. canadense)

Pangasianodon
hypophthalmus x
Pangasius bocourti
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The W x S hybrids showed significantly greater weight gain, length gain, and condition Malison et
factors compared to purebred walleyes and S x W hybrids. W x S hybrids exhibited less al. (1990)
aggressive behavior and were less affected by routine disturbances and handling,

making them easier to manage in an intensive culture setting. S x W hybrids had lower

egg survival (48.0%).

The hybrid fish exhibited significantly lower growth rates and survival compared to the Hatachote
parental species. Specific growth rate for hybrid was 0.60% compared to maternal et al. (2015)
(1.23%) and paternal (1.20%). Hybrids showed higher crude protein (74.74%) but lower

lipid content (15.64%).

Paralichthyidae Hybrid Platichthys stellatus x  The hybrid larvae develop to a larger size and settle later than P stellatus, but develop Yamashita et
flounder Kareius bicoloratus with a smaller size and settle earlier than the larvae of K. bicoloratus. Hybrids exhibit al. (2014)
euryhaline characteristics similar to those of P, stellatus
Hybrid Paralichthys olivaceus hybrid flounder showed superior growth rates and temperature tolerance. Slow Yu et al.
flounder X P dentatus development of gastric digestion and earlier formation of pyloric ceca. the survival rates (2010)
of hybrid flounder larvae through metamorphosis were low (approximately 30%
compared to 70% in P olivaceus).
Hybrid Paralichthys olivaceus no obvious heterosis during 64 days in the three crosses (Po x Pd, Fo x Po, Fo x Pd). the Sui et al.
flounder x P. dentatus hybrids of Po x Pd demonstrated positive heterosis in growth and high temperature (2013)
tolerance after 196dph.
Hybrid Paralichthys olivaceus Low percentage fertilization and hatching but high percentage of early survival. Kim et al.
flounder x Verasper variegatus (1996)
Hybrid Verasper variegatus Low percentage of fertilization rate and no hatching Kim et al.
flounder Paralichthys olivaceus (1996)
Salmonidae Hybrid Salmo salar x Salmo ~ Hybrids between the two species displayed varying levels of susceptibility to Bakke et al.
salmon trutta Gyrodactylus salaris and Gyrodactylus derjavini based on the parental line, with (1999)
resistance being influenced by the identity of the sire or dam.
Hybrid marble trout (Salmo  Hybrid offspring often showed better survival and growth rates than pure species, Meldgaarda
salmon marmoratus) and the particularly in inter-specific competition. The hybrids were generally larger than both et al. (2007)

brown trout (Salmo
trutta)

marble and brown trout in certain conditions, potentially indicating heterosis (hybrid
vigor).

Ethical Concerns

The ethical concerns surrounding fish hybridization
breeding have raised significant attention among
researchers, focusing on issues such as fish welfare,
unintended consequences of genetic manipulation, and
broader implications for natural ecosystems (Tiedje et al.,
1989; Snow et al, 2005; Mastor et al., 2025). These
concerns are particularly relevant with the increasing use
of CRISPR and other gene-editing technologies in
aquaculture, sparking debate among genetic engineers
and conservationists about the potential for creating
invasive species or disrupting natural food webs (Martin et
al, 2010; Erarto & Getahun, 2020). Developing ethical
guidelines and regulatory frameworks that balance the
benefits of hybrid fish breeding with the need to protect
animal welfare and biodiversity is essential (Ahmed et al,
2019; Cook et al., 2000).

Regulatory Frameworks

Table 2 illustrates that regulations governing hybrid
fish breeding and aquaculture vary significantly across
regions, with some enforcing strict controls on genetically
modified organisms (GMOs) and hybrids. The growing
complexity of international trade agreements and
environmental standards has further complicated the
regulatory landscape, as some countries have adopted
more stringent rules regarding the import and export of
such species (FAO, 2020). Consequently, it is crucial for
consumers to maintain open communication with
regulatory bodies to stay informed about these evolving
regulations (Leng, 2020; McMahon, 2020).

Challenges and Limitations of Fish Hybridization
Genetic Instability

One of the main challenges in fish hybridization is
maintaining genetic stability across successive generations.

Recent studies have emphasized the risks of genetic drift
and the potential loss of desirable traits in hybrid
populations, particularly when hybrids are produced over
multiple generations without proper management (Ahmed
et al., 2019; Cook et al, 2000). To address this issue,
comprehensive monitoring and breeding programs must
be implemented to ensure genetic stability. These
programs should incorporate genomic tools and marker-
assisted selection (Kalueff et al, 2014; Coughlan et al,
2020). Such approaches help sustain desirable traits in
hybrids, ensuring their reliable performance in commercial
production settings (Bartley et al.,, 2020; Briggs, 2002).

Health and Welfare

Previous studies on fish hybridization have indicated
that hybrid fish may be more susceptible to health issues,
such as deformities or reduced fertility, which can
negatively impact the efficiency of breeding programs
(Krasnovyd et al., 2020; Bartley, 2021). The occurrence of
deformities and other health problems is particularly
common among hybrid offsprings, especially when raised
under suboptimal conditions (Mitra et al., 2023; Franke et
al, 2024). As a result, it is essential to closely monitor
standard operating practices and breeding programs to
ensure the production of high-quality hybrid progeny (Ye
et al,, 2024). This approach helps minimize health risks and
improves the overall effectiveness of fish breeding efforts.

Regulatory and Public Perception

Obtaining regulatory approval for fish hybridization
and securing public acceptance can be difficult, especially
in areas where scepticism about GMOs and other forms of
genetic modification exists. Recent surveys of public
opinion revealed significant variability in consumer
acceptance of hybrid fish products, with some expressing
concerns over the safety and environmental impact of



Table 2: Regulatory frameworks for fish hybridization in various countries
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Country/Region Regulatory Body

Key regulations

Specific Guidelines for Hybridization

References

United States  U.S. Fish and
Wildlife Service
(USFWS)

European
Union

European
Commission (EC),
Member States
Ministry of
Agriculture and
Rural Affairs
(MARA)

China

India Ministry of
Fisheries, Animal
Husbandry and
Dairying
Ministry of
Agriculture,
Forestry and
Fisheries (MAFF)
Directorate of
Fisheries

Japan

Norway

Russia Federal Agency
for Fisheries
(Rosrybolovstvo)
Vietnam Ministry of
Agriculture and
Rural
Development
(MARD)
Department of
Environment,
Forestry and
Fisheries (DEFF)
Ministry of
Agriculture,
Livestock, and
Supply (MAPA)

South Africa

Brazil

New Zealand ~ Ministry for
Primary
Industries (MPI)
Department of
Agriculture,
Water and the
Environment

(DAWE)

Australia

Fisheries and
Oceans Canada
(DFO)

Canada

Thailand Department of

Fisheries (DOF)

National Environmental Policy Act
(NEPA), Lacey Act, Endangered
Species Act (ESA)

Common Fisheries Policy (CFP), EU
Habitats Directive

Fisheries Law of the People's
Republic of China

Coastal Aquaculture Authority Act,
2005

Fisheries Law of Japan

Aquaculture Act, Nature Diversity
Act

Federal Law on Fisheries and
Conservation of Aquatic Biological
Resources

Fisheries Law of Vietnam

National Environmental
Management Act (NEMA), Marine
Living Resources Act

National Environmental Policy Act,
Fisheries Law

Freshwater Fisheries Regulations
1983, Subclause (2) Part 8A Schedule
3

Environment Protection and
Biodiversity Conservation Act (EPBC
Act)

Fisheries Act, Species at Risk Act
(SARA)

Fisheries Act of Thailand

This act focusing on conservation of threatened and endangered
plants and animals. Hybridization requires environmental
assessments; restrictions on hybrid species that may impact native
populations

Focusing on sustainable management on fishing fleets and
preserving fish stock. Hybrid species must comply with biodiversity
and ecosystem protection guidelines; requires risk assessments

The law is stipulate to enhance the protection, increasing and
developing fishery resources. Strict regulations on the introduction
and breeding of non-native species; licenses required for hybrid

This act encompasses the farming of aquatic life under controlled

condition. Regulation of hybrid species in coastal aquaculture;
guidelines for species introduction and environmental impact
assessments

This act stipulates the basic framework of Japan's Fishery policy
which hybridization activities require permits; environmental impact
and biodiversity conservation are key considerations

Hybridization must adhere to strict environmental and biodiversity
conservation guidelines; licensing required. This act established a
governing framework for aquaculture industry in inland and marine
waters including the provincial sea, EEZ and mainland shelf of
Norway

Hybrid species breeding is strictly regulated; permits required, with a
focus on conservation of native species. This law focusing on
fisheries and conservation of aquatic biological resources which
consisting of 65 articles

Regulations focus on preventing environmental degradation;
hybridization must align with sustainable aquaculture practices. The
law consists of two articles on 61 and 61 on illegal fishing which
focusing on exploitation of fish

Hybridization requires environmental impact assessments; specific
guidelines to protect native biodiversity. This act focusing on
providing co-operative environmental governance by principal
affecting the environment

Hybrid breeding must comply with environmental protection laws;
specific regulations for non-native species but more focusing on
protection of migratory fish

Focusing on indigenous species management. Prohibition of noxious
fish species (Schedule 3) including its subspecies, hybrids and
variations of the species

Hybrid species must undergo rigorous risk assessments; regulations
to prevent impacts on native species and ecosystems.

Biodiversity conservation refers to the protection, preservation, and
management of ecosystems and natural habitats and ensuring that
they are healthy and functional. To protect and preserve species
diversity. To ensure sustainable management of the species and
ecosystems.

Focusing on four categories which are endangered, threated,
extirpated and special concern. Hybridization practices are regulated
to protect native species; permits required for hybrid breeding
activities.

Section 73 of the Species at Risk Act ('SARA', the Act) sets out
conditions that must be met before a competent minister can issue a
permit for an activity affecting a listed wildlife species, any part of its
critical habitat or the residences of its individuals.

Hybridization is regulated with a focus on preventing adverse
environmental impacts and protecting native species.

This Act lays down the general principles relating to fisheries. The
104 Sections of the Act are divided into a title part (sections 1 to 5)
and 11 Chapters: Fisheries Management (1); Fishery Zone (2);
Promotion of Aquaculture (3); Standard of Fish or Fish Products (4);
Importation and Exportation of Fish and Fish Products (5); Overseas
Marine Fishery (6); Fees on license or Permit and Substitute (7);
Transferability (8); Competent Official (9); Administrative Measure
(10); Penalties (11).

National
Aquaculture
Act, 1980

Council
Directive
92/43/EEC
Fisheries Law
of the
People's
Republic of
China, 1986
Coastal
Aquaculture
Authority Act,
2005
Protection of
Fisheries
Resources Act,
1951
Aquaculture
Act, 2005

Federal Law,
2013

Law on
Fisheries, 2019

Marine Living
Resources Act,
1998

Sustainable
Development
Policy on
Fisheries and
Aquaculture,
2009
Fisheries Act,
1996

EPBC Act,
1999

Fisheries Act,
1985

Fisheries Act,
1947
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South Korea Ministry of
Oceans and

Fisheries (MOF)

Assessment Act

Fisheries Act, Environmental Impact ~ Strict guidelines for hybrid species; environmental
assessments are mandatory before breeding.

The purpose of this Act is to promote environment-friendly, Assessment

impact Environmental
Impact

sustainable development and healthy and pleasant life of citizens by Act, 1
forecasting and assessing the environmental impacts of a plan or
project and by formulating measures for environmental conservation

when a plan or project that has an environmental impact is
formulated and implemented.

Malaysia Fisheries Fisheries Act 1985
Department Section 40(2)
Malaysia Please refer to the Malaysian

Biosafety Law (Akta 678) which
mentions crossing of species beyond
their natural reproductive range.

No specific regulations for fish hybridization but Part VIII, section 40 Fisheries Act
(2) of the Fisheries Act 1985 on control the release of non- (No. 317 of
indigenous fish species into the natural environment may govern 1985) 1985
this activity in Malaysia.

genetically modified or hybridized fish (Pérez-Ramirez et
al, 2020; Dayé et al., 2023). To address these challenges,
the aquaculture industry needs to prioritize transparent
communication and public education, emphasizing the
benefits of hybrid fish while addressing concerns related to
its safety and sustainability (Love et al., 2021).

Future Directions and Innovations in Fish Hybridization

The future of fish hybridization is poised for significant
advancements through the integration of cutting-edge
genomic technologies such as CRISPR and other gene-
editing techniques (Charpentier, 2017; Yoon et al.,, 2023)
which offer precise genetic modifications to enhance traits
like disease resistance, environmental adaptability,
improved growth rates, and higher survival rates (Snow et
al, 2005; Ahmed et al,, 2019; Cook et al., 2000). Despite
these advancements, ethical and regulatory concerns
surrounding gene-editing in aquaculture must be properly
addressed. Alongside these technologies, selective
breeding programs that leverage genomic selection and
marker-assisted breeding are becoming increasingly
important, enabling the accurate identification of desirable
traits and improving breeding outcomes (Gjedrem et al.,
2020; Lal et al., 2024). As climate change continues to
impact ecosystems, hybrid species such as tilapia and
catfish are being developed to adapt to shifting
environmental conditions, including changes in water
temperature and salinity, ensuring the sustainability of
global seafood production (Free et al., 2019). Furthermore,
incorporating  fish  hybridization into  sustainable
aquaculture practices, such as multi-trophic systems and
recirculating aquaculture systems (RAS), can significantly
boost efficiency and reduce environmental impact,
contributing to the long-term preservation of aquatic
ecosystems (Troell et al., 2020; Salgotra and Chauhan 2023;
Lal et al,, 2024).

Conclusion

Fish hybridization offers a promising strategy for
enhancing the productivity, resilience, and sustainability of
aquaculture. By combining favourable traits from different
species or strains, hybrid fish can deliver significant
advantages, such as faster growth rates, improved disease
resistance, and greater adaptability to environmental
changes. Advances in genomic technologies, selective
breeding, and sustainable farming practices have further
amplified the potential of hybrid fish to contribute to
global seafood security. However, the success of these

breeding programs depends on careful management,
comprehensive research, and responsible practices to
address the potential risks and challenges associated with
hybridization. As global seafood demand continues to rise,
hybrid fish breeding is expected to play an increasingly
crucial role in ensuring seafood security and fostering the
development of sustainable aquaculture.
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