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ABSTRACT  Article History 

Global seafood demand continues to rise, driven by increasing population, urbanization, and 

growing health awareness, with global seafood consumption at around 20.5 kg per capita. 

Overfishing, pollution, and climate change threaten wild fish stocks, driving aquaculture to the 

forefront of ensuring seafood security. Aquaculture now accounts for over 50% of global fish 

production and plays a critical role in alleviating pressure on wild fisheries resources. 

Technological advancements, including improved breeding, enhanced feed efficiency, and 

improved disease management, have contributed significantly to the growth of aquaculture. 

However, challenges such as disease outbreaks, environmental sustainability, and economic 

viability persist. Fish hybridization offers a promising solution, enhancing traits like disease 

resistance, growth rates, and adaptability to fluctuating environments. Recent studies have 

shown that hybrid fish outperform wild types in these areas, reinforcing the sustainability of 

aquaculture systems. Nonetheless, stringent management and monitoring are required to 

mitigate potential risks, such as unintended release of genetically distinct hybrids and 

ecosystem disruption. As aquaculture continues to evolve, hybridization is expected to play a 

crucial role in addressing global food security and meeting the increasing demand for 

sustainable seafood. This paper reviews success stories in fish hybridization, examines 

prevailing constraints and challenges, and outlines priority research avenues and policy 

directions for the field. 
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INTRODUCTION 

 

 The global demand for seafood continues to rise due 

to increasing consumer interest. According to the FAO 

(2020), per capita fish consumption increased from 9.9 to 

20.5 kg by 2018, and this trend is expected to persist, 

driven by growing awareness of the health benefits of 

seafood and the need to sustain a growing global 

population. However, wild fish stocks are under significant 

pressure from pollution, climate change, and overfishing. 

The FAO's 2020 report on the State of World Fisheries and 

Aquaculture highlights that nearly one-third of global fish 

stocks are overexploited, emphasizing the crucial role of 

aquaculture in ensuring seafood security. 

 In recent years, aquaculture has played a crucial role in 

ensuring seafood security by addressing several challenges 

in the global fish supply. As wild fish stocks face intense 

pressure from pollution, overfishing, and fluctuating 

climate conditions, aquaculture offers a sustainable 

alternative to meet the growing demand for seafood. 

According to the FAO (2020), aquaculture now contributes 

more than 50% of the fish consumed worldwide, making it 

a key player in global food production. This sector has 

benefitted from technological advancements, such as 

improved breeding techniques, better feed efficiency, and 

enhanced disease management. 
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 However, aquaculture still faces significant challenges, 

including disease outbreaks, environmental sustainability, 

and long-term economic viability. Fish hybridization has 

emerged as a promising solution to address these issues, 

aiming to improve productivity, resilience and 

sustainability in aquaculture (Lorenzen et al., 2012; Mitra et 

al., 2023). Researchers from various fields are working to 

enhance aquaculture production, focusing on creating 

viable progeny with desirable traits to boost resilience and 

adaptability to the unpredictable ecological changes 

(Roberts et al., 2010; Masuma & Aoki, 2023; Ye et al., 2024). 

 

Global Demand for Seafood 

 FAO (2020) reported that seafoods demand is 

anticipated to rise by 50% by 2050, driven by increasing 

population, urbanization and incomes especially in Asia 

and Africa. The COVID-19 pandemic has underscored the 

need for robust food systems, with aquaculture proving 

essential in sustaining seafood supply chains during 

disruptions (Love et al., 2021; Kelling et al., 2023). This 

escalating demand underscores the urgent need for 

sustainable aquaculture practices that can meet 

international seafood demands while minimizing 

environmental impacts (Micheli et al., 2014; Ababouch et 

al., 2023). However, attaining this demand poses a major 

challenge, for instance, ecological and biodiversity 

degradation, depletion of wild fish stock, and 

vulnerabilities in the supply chain (Mangano et al., 2022; 

Beaugrand et al., 2010). Concurrently, fluctuations in the 

ecological climate, such as changes in ocean acidity and 

temperature, lead to disruptions in the distribution of 

marine species and food webs, affecting biodiversity 

(Beaugrand et al., 2010; Albouy et al., 2014; du Pontavice et 

al., 2019; Hodapp et al., 2023).  

 

Overfishing 

 Human activities, such as overexploitation and 

ecosystem disturbances, have triggered significant 

ecological degradation and biodiversity loss. Overfishing, 

both of targeted and non-targeted species, is a major 

challenge to food security, contributing to unsustainable 

fisheries in marine ecosystems and coastal communities 

(Coll et al., 2008; Cheung et al., 2025). Overfishing remains 

a critical threat to global fish stocks, with the FAO 

reporting that 34.2% of fish stocks are currently overfished 

(FAO, 2020). The overexploitation of wild fish stocks has 

led to unsustainable fisheries and failures in fisheries 

management systems (Hilborn et al., 2003; Bastardie et al., 

2024). In response, governments are developing more 

comprehensive management frameworks that focus on 

holistic ecosystem approaches and species conservation 

(Murawski, 2000; Naylor et al., 2023). Recent findings 

indicate that climate change exacerbates the depletion of 

wild fish populations, affecting fish reproduction, 

distribution, and growth rates (Free et al., 2019; McKenzie 

et al., 2021). This persistent decline underscores the 

growing importance of the aquaculture sector as a 

sustainable alternative to meet global seafood demands. 

 

Aquaculture Growth 

 Aquaculture has emerged as a sustainable solution to 

the depletion of wild fish stocks. It involves the cultivation 

of fish, invertebrates, and aquatic plants for human 

consumption. According to the FAO (2022), aquaculture 

production has seen significant growth, increasing from 

approximately 15 million tons to over 90 million tons 

between 2000 and 2020. This growth has been driven by 

advancements in feed technology, selective breeding 

programs (Abwao et al., 2021), improved cultivation 

management techniques, and genetic enhancement (Lu et 

al. 2019; Manan et al., 2023; Flourizel et al., 2023). As a 

result, the aquaculture sector plays a crucial role in 

mitigating the overexploitation of wild fish stocks by 

contributing to the global food supply chain. 

 Furthermore, FAO (2020) reported that aquaculture 

production increased annually by 5.8% from 2000 to 2018, 

reaching an international production level of 

approximately 114.5 million tons. With this rapid 

expansion, the industry is incorporating advancements 

from various disciplines to further enhance production. 

Recent innovations, such as the application of 

biotechnology, the integration of mechanization, and 

advanced farming systems, have significantly contributed 

to the efficiency and sustainability of the aquaculture 

sector (Gladju et al., 2022). 

 

Challenges in Aquaculture 

 The aquaculture industry faces numerous challenges, 

such as disease outbreaks (Murray & Peeler, 2005; Leung & 

Bates, 2013; Sanches-Fernandes et al., 2022), environmental 

degradation (Pérez, 2003; Martínez-Porchas et al., 2012; 

Sampantamit et al., 2020; Chiquito-Contreras et al., 2022), 

and the high costs associated with feed (Suleiman & 

Rosentrater, 2018). Disease management remains a 

significant concern, with recent studies indicating a rise in 

antibiotic-resistant pathogens within aquaculture systems 

(Miranda et al., 2013; Hossain et al., 2022). Furthermore, the 

environmental impacts of aquaculture, including habitat 

destruction, water pollution and reliance on wild fish for 

feed production, have raised sustainability concerns 

(Beveridge et al., 2018; Verdegem et al., 2023). One 

promising solution is the development of fish hybrids, 

which can enhance the resilience and productivity of 

farmed fish, reduce the dependency on chemical inputs, 

and improve the overall efficiency of aquaculture systems 

(Lorenzen et al., 2012; Zhang et al., 2023). 

 

Fish Hybridization 

 Fish hybridization has long been practiced, involving 

the intentional crossing of different species or genera to 

produce offspring with enhanced traits (Alm, 1955; Hubbs, 

1955; Rahman et al. 2013; Adah et al., 2014; Semeniuk et 

al., 2019). Hybridization can be classified into two types: 

interspecific, where fish from different species within the 

same genus are crossed, such as the brown-marbled 

grouper (Epinephelus fuscoguttatus) and giant grouper (E. 

lanceolatus) (Ch’ng & Senoo, 2008) and intergeneric, which 

involves crossing fish from different genera, like the 

sympatric kirikuchi char (Salvelinus japonicus) and the red-

spotted Masu salmon (Oncorhynchus masou macrostomus) 

(Sato et al., 2008). 
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 Despite its potential, fish hybridization faces biological 

challenges, including sperm recognition barriers, 

difficulties with sperm-egg penetration, and complications 

in pronucleus formation (Su et al., 2016; Lu et al., 2023). 

Researchers have developed strategies to overcome these 

issues, with hybridization becoming increasingly adopted 

in aquaculture to improve growth rates, enhance disease 

resistance, and increase adaptability to environmental 

changes. Recent advancements in genomic technologies 

and selective breeding have expanded the potential for 

hybrid fish breeding, making it a critical tool for enhancing 

aquaculture's contribution to global food security (Yue & 

Wang, 2017; Mushtaq et al., 2025). 

 Hybridization allows for the precise control of genetic 

traits, with modern molecular biology and genomics 

enabling the development of hybrids with specific 

desirable characteristics (Yue & Wang, 2017). These 

advancements have made hybridization an essential 

technique for improving the sustainability and 

performance of farmed fish. Artificial hybridization has also 

gained traction as an adaptation mechanism in fields such 

as ecology, conservation, and evolution, helping species 

adapt to fluctuating environments and promoting 

ecosystem resilience (Krasnovyd et al., 2020; Bartley, 2021). 

Studies show that hybrid fish often exhibit greater genetic 

variability, making them more resilient to stressors such as 

ocean acidification, climate change, and salinity 

fluctuations (Jones et al., 2018; Sundin, 2023). 

 Environmental changes have driven the evolution of 

species, but some now face endangerment due to these 

pressures. Fish hybridization offers a solution by creating 

offspring with greater adaptability to environmental 

challenges, such as improved growth and disease 

resistance (Lorenzen et al., 2012). These hybrids are 

valuable in sustainable aquaculture practices (Kamal & 

Mair, 2005; Sonesson et al., 2023), especially as the 

aquaculture industry seeks ways to meet rising demand for 

protein while managing ecological impacts. 

 Hybridization also plays a role in conservation by 

restoring genetic diversity in endangered species through 

the introduction of strains well-adapted to fluctuating 

native habitats (Reisenbichler et al., 2003). However, 

hybridization carries risks, such as potentially harming local 

native species and leading to genomic extinction in some 

cases (Muhlfeld et al., 2014). Researchers emphasize the 

need for careful monitoring and management of hybrid 

populations to prevent negative impacts on wild 

populations (Harbicht et al., 2014; Hoffmann et al., 2021). 

 Traditionally, selective breeding for broodstock has 

focused on selecting desirable morphological traits, which 

is time-consuming and uncertain in its outcomes. In 

contrast, hybridization offers a more efficient method for 

increasing genetic diversity and improving traits in 

progeny (Harbicht et al., 2014; Salgotra and Chauhan 

2023). Early hybridization efforts in aquaculture, such as 

tilapia (Oreochromis spp.) hybrids (Pullan & Smith, 1987), 

have paved the way for more recent developments, like 

the hybrid catfish (Ictalurus punctatus × Ictalurus furcatus), 

which has gained widespread adoption in the U.S. due to 

its superior growth rates and disease resistance (Dunham 

et al., 2020). 

 Fish hybridization, which began as a scientific curiosity 

in the 1880s (Green, 1881; Day, 1882), has evolved into a 

critical tool for aquaculture and conservation. Early 

experiments by Alm (1955) on the Salmonidae family laid 

the foundation for modern hybridization techniques. 

Although initial hybrids were often less viable than 

purebreds, continued research has addressed challenges 

such as hatchability, larval development, and growth rates 

(Blanc and Chevassus, 1979; Chevassus, 1979). Today, 

hybridization is recognized as a valuable method for 

enhancing aquaculture productivity and ecological 

resilience (Salgotra and Chauhan 2023). 

 

Fish Hybridization Techniques 

 Numerous studies on fish hybridization have been 

conducted to advance the aquaculture industry. The 

primary objective is to enhance specific desirable traits, 

such as disease resistance, adaptability to diverse 

ecological and biological environments, lower feed 

conversion ratios and improved growth and survival rates 

(Devlin et al., 2015; Robinson et al., 2017; Cook et al., 2000). 

In earlier decades, fish hybridization primarily focused on 

broodstock selection and induced breeding through 

artificial insemination, but managing desirable traits from 

broodstock proved challenging. However, with the 

complexities of genetic variation, researchers have 

adopted innovative approaches, introducing genetic 

engineering as a solution (Munday et al., 2013; Jones et al., 

2018). The use of genetic engineering, particularly CRISPR-

Cas9, has been successfully implemented in hybrid fish 

breeding to enhance specific traits and develop improved 

strains, contributing to the growth of innovative 

aquaculture (Lu et al., 2021; Roy et al., 2022). This paper 

explores the techniques used in fish hybridization for 

aquaculture. 

 

Genetic and Biological Implications of Fish 

Hybridization 

Genetic Diversity 

 Due to the depletion of wild fish stocks, genetic 

biotechnologists have developed new variations that 

improve growth rates, disease resistance, and adaptability 

to environmental fluctuations. These enhanced traits, often 

referred to as hybrid vigor, are the result of increased 

genetic diversity. Hybrid vigor, or the superiority of hybrid 

offspring over their parental species, is well-documented, 

with hybrid progeny exhibiting better qualities than their 

parents (Devlin et al., 2015; Robinson et al., 2017; Cao et 

al., 2022). The increased genetic diversity offers significant 

advantages for breeding programs by enabling the 

manipulation of desirable traits to improve stock quality 

(Zhang et al., 2023). However, while hybridization can 

increase genetic diversity, improper management can lead 

to inbreeding depression, where backcrossing with 

parental species can result in reduced fitness, lower 

reproduction rates, and genetic expression issues (Reed et 

al., 2015). Therefore, effective breeding strategy 

management is essential to limit the risks and maximize 

the benefits of hybridization (Luo et al., 2014). 
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 Over time, the genomes of fish hybrids may be subject 

to genetic drift, which results from random changes in 

allele frequencies and genome segregation. This drift can 

alter the genetic population and impact the ecological 

performance and biodiversity of hybrid fish (Devlin et al., 

2015; Robinson et al., 2017). In aquaculture, hybridization 

enhances genetic diversity, contributing to increased 

resilience in the face of environmental fluctuations and 

biodiversity changes. Hybrid populations have been shown 

to be more resilient to diseases and environmental 

changes due to their greater genetic variation (Sonesson et 

al., 2023). Recent studies confirm that hybrid fish often 

possess greater genetic variation than purebred strains, 

which improves survival and adaptability to changing 

environments (Zhu et al., 2021). This genetic diversity is 

critical for maintaining robust and productive aquaculture 

systems, as it enables populations to adapt to emerging 

challenges like climate change and new diseases. 

 

Growth Rates and Efficiency 

 One of the key advantages of hybrid fish breeding is 

the potential for enhanced growth rates and improved feed 

conversion efficiency. Recent studies have shown that hybrid 

tilapia (Oreochromis spp.) exhibit faster growth and greater 

efficiency compared to purebred strains, making them a 

more cost-effective choice for aquaculture operations (El-

Sayed & Kawanna, 2021). Likewise, newly developed carp 

hybrids (Cyprinus carpio × Carassius auratus) have 

demonstrated superior growth performance and increased 

disease resistance, further highlighting the potential of 

hybridization to boost productivity in aquaculture (Zhang 

et al., 2020; Salgotra and Chauhan 2023). 

 

Disease Resistance 

 Hybridization in fish increases resistance to diseases, 

reducing the reliance on antibiotics and other chemical 

interventions. Recent research has shown that hybrid fish 

may be more resilient to common aquaculture related 

diseases, such as bacterial infections and parasites 

(Miranda et al., 2013). For instance, a study on hybrid 

grouper (Epinephelus lanceolatus × E. coioides) found that 

the hybrid offspring demonstrated significantly higher 

resistance to Vibrio spp. infections compared to their 

purebred counterparts (Sun et al., 2021). These results 

suggest that hybrid fish breeding could play a crucial role 

in minimizing the environmental impact of aquaculture by 

reducing the need for chemical interventions. 

 Despite these advantages, many questions about 

hybridization in aquatic animals remain unanswered. Why is 

biotechnology increasingly being applied in hybridization? 

What are the primary goals of hybridization, and what 

effects does it have on aquatic life? How do hybrid and 

genetically modified aquatic animals compare to their 

parent species in terms of resilience to environmental 

fluctuations? The answer lies in the numerous benefits of 

hybrid vigor (Ye et al., 2024). Hybrids are often 

characterized by faster growth, higher disease resistance, 

resilience under environmental stress, and improved 

antioxidant and immune capacity (Mitra et al., 2023; Franke 

et al., 2024). Due to their adaptability to fluctuating 

conditions, several species, such as zebrafish, have been 

introduced (Stickney et al., 2002; Zon & Peterson, 2005). 

 Previous studies have shown that zebrafish possess 

morphological and physiological traits that are remarkably 

like mammals, making them valuable in genomic research 

and pharmaceutical applications. Their adaptability and 

ability to perform large-scale phenotype-based screenings 

make them ideal for such purposes (Ton et al., 2002; Zon & 

Peterson, 2005). These characteristics are vital for 

producing high-quality offspring to meet the growing 

demand for food production. The desirable traits in 

hybrids encourage aquaculturists to increase hybrid 

production to address the shortage of aquatic life (Bartley 

et al., 2020). As a result, many new hybrid species have 

been introduced into aquaculture for human consumption 

(Olesen et al., 2003). 

 However, due to the unclear long-term effects of 

hybridization, many consumers prefer purebred fish over 

hybrids. Despite this, hybrids offer promising opportunities 

for high-quality production due to their rapid growth, high 

survival rates, and disease resistance (Krasnovyd et al., 

2020; Bartley, 2021). Previous research indicates that 

hybrid populations can exhibit enhanced antioxidant and 

immune capacities, allowing them to better adapt to 

varying environmental conditions, such as salinity 

fluctuations (Ye et al., 2024). 

 

Environmental Adaptability 

 Recent study has identified fish hybrids as a key factor 

with significant potential for resilience in fluctuating 

environments. These hybrids, which are often classified as 

genetically modified organisms (GMOs), possess a wide 

range of genetic variability, making them more resilient to 

ecological stressors such as ocean acidification (Jones et 

al., 2018; Sundin, 2023). Ocean acidification, which is on 

the rise, has a profound impact on aquatic life by altering 

the chemical composition of seawater and disrupting the 

physiological processes of many marine organisms 

(Sundin, 2023). This change disrupts normal metabolic 

functions and buffering capacities, thereby enhancing 

metabolic processes and increasing survival rates in certain 

species (Servili et al., 2023). 

 Some marine species exhibit a higher degree of 

resilience than others. For example, a previous study has 

shown that Atlantic salmon and brown salmon hybrids 

demonstrate greater adaptability to pH fluctuations 

compared to purebred species (Bryden et al., 2004). 

Similarly, Mustafa et al. (2013) found that hybrid groupers 

are more tolerant of ocean acidification than their 

purebred counterparts. These hybrids, therefore, display a 

greater capacity to adapt to climate change, exhibiting 

better endurance under stress compared to purebred 

species (Ye et al., 2024). Studies on hybrids in invertebrates 

have also reported better adaptability than purebreds 

(Salgotra and Chauhan 2023). 

 Water quality, which includes biological, chemical, and 

physical parameters, is crucial in aquaculture systems. 

Dissolved oxygen (DO) is a particularly vital component. 

Rapid depletion of DO can lead to hypoxia, which induces 

stress in fish, suppresses immunity, and can even result in 
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death (Abdel-Tawwab et al., 2019). Research has shown 

that hypoxia can make fish more vulnerable to diseases 

(Moyson et al., 2015; Wang et al., 2023). However, Lee et al. 

(2024) observed that hybrid progenies exhibit higher 

survival rates compared to purebreds due to their superior 

ability to manage stress. Additionally, Roberts et al. (2010) 

discussed how hybrids could potentially replace obligately 

estuarine fish in nature. Therefore, cultivating hybrid 

species in controlled, closed-water systems is essential to 

harness their desirable traits and potential to replace 

natural species (Allendorf et al., 2001). 

 

Economic Viability of Hybrid Fish 

 Hybrid fish offers numerous advantages, including 

higher survival rates, improved feed conversion ratios, 

enhanced adaptability to environmental conditions, 

greater disease resistance, faster growth rates, and 

significant cost reductions related to feed and disease 

management (Faudzi et al., 2017; Shapawi et al., 2018; 

Ahmed et al., 2019). Studies suggest that hybrid fish 

farming can be more profitable than purebred farming, 

especially regarding disease and feed management, due 

to hybrids' ability to thrive in fluctuating environments, 

which increases yields in aquaculture production. 

However, hybrid fish farming requires proper regulatory 

oversight, practical measures, and appropriate post-

harvest handling to ensure sustainability and market 

success (Zhou & Gui, 2018). Innovations in aquaculture 

have further enhanced efficiency, with hybrid breeding 

providing economic benefits through improved 

productivity, higher market demand, disease resistance, 

and resource efficiency. 

 Hybrids often exhibit faster growth rates than their 

purebred counterparts. For example, a study on walleye 

and sauger hybrids demonstrated faster growth 

compared to purebreds, a trend seen in several other 

species as well (Giudice, 1966; Malison et al., 1990; 

Rosenfield et al., 2004; Nielsen et al., 2010). These growth 

advantages lead to higher productivity and yield in 

aquaculture. Additionally, hybrids tend to display greater 

disease resistance, as seen in hybrid chinook salmon, 

which showed improved resistance to diseases without 

significant differences in genetic diversity (Semple et al., 

2021). Numerous studies support the observation that 

hybrids have superior disease resistance compared to 

purebreds (LaPatra et al., 1996; Bakke et al., 1999; 

Bunlipatanon & U-Taynapun, 2016; Šimková et al., 2022). 

This increased resilience, coupled with better feed 

conversion ratios, means hybrid fish require less feed, 

resulting in greater resource efficiency and lower costs 

related to disease management and feed. 

 Investing in hybrid fish breeding involves three main 

areas: initial investment, genetic management, and 

marketing. The initial investment includes breeding facility 

costs, training, and acquiring broodstock. Genetic 

management is essential to prevent negative impacts on 

native species and biodiversity, while marketing strategies 

ensure the commercial success of hybrids by considering 

consumer preferences and safety concerns. A 

comprehensive cost-benefit analysis is crucial for 

evaluating the feasibility of hybrid fish breeding, factoring 

in initial investments, operational costs, market prices, and 

other variables (Salgotra and Chauhan 2023). 

 Hybridization is a promising solution to address 

sustainability challenges in fisheries, particularly those 

caused by overfishing. Hybrids offer improved traits, such 

as faster growth, better disease resistance, and adaptability 

to environmental changes, which support market feasibility 

and help meet the growing demand for protein sources 

(Brown & Day, 2002). Global fish demand has increased, 

driven by population growth and consumer interest in 

healthy lifestyles, with a projected 1.5% annual rise in fish 

consumption through 2030 (FAO, 2020). 

 Consumers increasingly prefer hybrid products over 

purebreds because of their superior quality and 

sustainability. Market research indicates that consumers 

favor premium seafood products with high nutritional 

value and health benefits. For example, genetically 

improved tilapia has demonstrated better fatty acid 

metabolism, resulting in improved growth and nutritional 

quality (Ng & Hanim, 2007; Teoh et al., 2011). Hybrid 

tilapia have successfully penetrated global markets due to 

their taste, texture, and nutritional value, while hybrid 

catfish have gained popularity in the U.S. market, 

appreciated for their consistent quality and availability 

(Kumar et al., 2008; Stankus, 2010; Sun et al., 2022). 

 Hybridization contributes to the efficiency of fish 

farming by offering better growth rates, survival, and 

disease resistance compared to purebred species. These 

traits help reduce production costs and enhance 

profitability, supporting sustainable aquaculture practices 

(Dee et al., 2022). Genetically improved strains, such as 

hybrid tilapia, have demonstrated superior growth, 

survival, and adaptation to environmental stresses, making 

them a viable economic choice for aquaculture (Prabu et 

al., 2019; Zhao et al., 2020). Hybrids also exhibit greater 

resistance to diseases, reducing mortality rates and the 

need for antibiotics, further lowering costs related to 

disease and water management (Cai & Ma, 2004; Zabidi et 

al., 2021). Some examples of fish hybrids across fish family 

produced for aquaculture are summarized in Table 1.  

 

Environmental and Ethical Considerations 

Environmental Impacts 

 Releasing hybrid fish into natural environments may 

pose risks to native populations by introducing new 

competition for resources and causing genetic pollution 

(Alves et al., 2007; Laikre et al., 2010; Erarto & Getahub, 

2020). Recent studies have raised concerns about the 

potential for hybrid fish to interbreed with native species, 

which could lead to the loss of unique genetic traits and 

disruption of local ecosystems (Arthington, 1991; Laikre et 

al., 2010; Bradbeer et al., 2019). However, advancements in 

technology, such as the development of sterile hybrids, 

have reduced the threat of genetic contamination, making 

fish breeding a more environmentally sustainable option 

(Bradbeer et al., 2019). These innovations highlight the 

importance of responsible breeding practices and the need 

for stringent regulations to safeguard natural ecosystems 

(Naish et al., 2007; Reid et al., 2018; Jolly et al., 2023). 
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Table 1: Summary of hybrid fish produced for the aquaculture industry 

Family Hybrid name Parent species Key traits References 

Moronidae Hybrid 

Striped Bass 

Morone chrysops ♀ × 

Morone saxatilis ♂ 

Hybrids exhibited higher growth rates but demonstrated lower survival at the lowest 

feeding level due to excessive cannibalism. Hybrids showed significantly lower 

metabolic energy expenditure and utilized food more efficiently than purebred. Showed 

higher growth efficiencies (12-15% higher), food conversion ratios. Hybrids exhibited 

lower metabolism (by 10-14%) and higher growth energy (by 10-14%) 

Tuncer et al. 

(1990) 

Ictaluridae Hybrid catfish Channel catfish, blue 

catfish, and their F1 

and F2 Hybrids 

Use genus and 

species name 

consistently 

F2 hybrid females had a significantly lower ovulation rate (12.2%) compared to channel 

catfish, blue catfish, and F1 hybrids (83.5, 58.4, and 56.5%, respectively). F2 hybrids 

produced fewer eggs per kilogram of body weight (923 eggs/kg) than the other groups 

(channel catfish: 7,893; blue catfish: 5,600; F1 hybrids: 5,676). F1 hybrids had smaller 

testes relative to body weight compared to channel catfish but not blue catfish. 

Fertilization rates were highest in channel catfish eggs (73.6%), while F3 hybrid eggs had 

much lower fertilization rates (5.1%). F1 hybrids rarely laid eggs when backcrossed to 

parent species, and F2 hybrids did not spawn naturally in various environments, 

indicating reproductive breakdown and difficulties in backcrossing. 

Dunham & 

Argue 

(2020) 

 Hybrid catfish Ictalurus punctatus ♀ x 

I. furcatus ♂ 

At low densities, channel catfish fry grew faster than hybrid catfish fry. However, the 

hybrid catfish exhibited superior growth at higher densities, surpassing both channel 

and blue catfish in growth performance. Hybrid catfish demonstrated greater survival 

rates than channel catfish, particularly under conditions of stress such as oxygen 

depletion and bacterial infections. 

Dunham et 

al. (1990) 

  Ictalurus punctatus ♀ 

× I. furcatus ♂  

F1 hybrids had higher growth rates, reaching an average weight of 666 grams compared 

to channel catfish (577 grams) and blue catfish (396 grams). Growth performance 

declined in later hybrid generations (F2, F3). F1 hybrids grew faster in high-density 

environment. backcross hybrids with parental species showed poorer growth 

performance.  

Argue et al., 

(2014) 

  Ictalurus punctatus ♀ 

× I. furcatus ♂ 

Hybrid Catfish demonstrated better growth performance compared to purebred. 

Survival rate higher for hybrids (75–97%) than purebred (67-94%). Hybrids reached 

higher harvest weight (671-825g) compared to purebred (525-821g) 

Fantini-

Hoag et al. 

(2022) 

Portunidae Hybrid mud 

crab 

S.olivacea ♀ x S. 

tranquebarica ♂ 

The hybridization between S. paramamosain and S. tranquebarica resulted in fecundity 

ranging from 32,200 to 1,868,000 eggs, with a hatching rate between 2 and 45.8%. The 

hybridization of S. olivacea with S. tranquebarica resulted in a 98% hatching rate. 

Production of viable offspring (crablets) in interspecific hybridization is lower compared 

to intraspecific mating.  

Gunarto et 

al. (2020) 

Pleuronectidae Hybrid 

yellowtail 

flounder 

Pleuronectes 

ferrugineus ♀ x 

Pleuronectes 

americanus ♂ 

Despite the successful creation of hybrids, the gonad development in the hybrid fish 

was abnormal. Many hybrid individuals exhibited underdeveloped gonads or did not 

reach reproductive maturity, suggesting potential fertility issues with the hybrids. This 

could limit their ability to reproduce naturally in the wild or in aquaculture settings. 

Park et al. 

(2003) 

Acipenseridae Hyrbid 

Sturgeon 

Acipenser Baerii × 

Acipenser 

gueldenstaedtii 

The survival rate of diploid hybrids was relatively high, with no significant difference 

compared to pure Siberian sturgeon. The mortality rate of triploid hybrids was 

approximately twice as high as that of diploid hybrids, indicating that triploidization 

negatively affected the viability of the hybrids. 

Fopp-Bayat 

et al. (2022) 

 Hybrid 

sturgeon 

Acipenser baerii ♀ × A. 

gueldenstaedtii ♂ 

Excessive protein in the diet (beyond 400 g/kg) resulted in decreased growth, poorer 

protein utilization by the hybrids. 

Guo et al. 

(2012) 

Cyprinidae Hybrid carp female grass carp 

(Ctenopharyngodon 

idella) X male carp 

(Cyprinus carpio, 

Israeli mirrow variety) 

Hybrid died during embryonic development Stanley 

(2011) 

 Hybrid grass 

carp 

Ctenopharyngodon 

idella x 

Hypophthalmichthys 

nobilis 

hybrid grass carp exhibited slow growth and high mortality rates. Hybrid grass carp 

consumed less vegetation and had a significantly lower feeding rate than grass carp. 

hybrids exhibited physical deformities such as spinal curvature, enlarged guts, and 

misshapen heads. 

Osborne 

(2011) 

 Hybrid carp Ctenopharyngodon 

idella x Aristichthys 

nobilis 

hybrid grass carp larvae exhibited very low survival rates (1-3%), despite achieving 

decent growth (84-212mg) over 13 days. The high mortality of hybrid larvae was 

attributed to genetic abnormalities resulting from hybridization. 

Opuszynski 

et al. (1985) 

 Hybrid carp Cyprinus 

carpio X Carassius 

gibelio  

The hybrids exhibited intermediate traits between the two parental species, both 

morphologically and physiologically. This included intermediate glucose and cholesterol 

levels, as well as an intermediate intestine-to-body size ratio, suggesting hybrid vigor in 

terms of food utilization, metabolism, and energy intake. hybrids demonstrated higher 

gonado-somatic indices (GSI) than common carp. 

Šimková et 

al. (2015) 

Cichlidae Hybrid Nile 

Tilapia 

Oreochromis niloticus 

x O. mossambicus)  

 

The study observed that hybridization between male Nile tilapia and female 

Mozambique tilapia resulted in an all-female F1 generation.  

Sarker et al. 

(2024) 

 Hybrid Tilapia Oreochromis niloticus 

x Oreochromis 

mossambicus & 

Oreochromis 

mossambicus x 

Oreochromis niloticus 

Hybrids of O. mossambicus x O. niloticus showed positive heterosis on weight gain and 

biomass gain but low FCR. Hybrids of O. niloticus x O. mossambicus showed low 

spawning frequency. Hybrids superior for salinity. Potential for brackish water culture.  

Kamal and 

Mair (2005) 

Percidae Hybrid 

walleye 

Stizostedion vitreum x 

S. canadense 

Hybrids had more severe erosion of pectoral and pelvic fins than walleyes. Hybrid more 

susceptible to columnaris disease caused by Flexibacter columnaris 

Clayton et 

al. (1998) 

Percidae Hybrid 

walleye 

walleye ♀ × sauger S. 

canadense ♂ 

Both walleyes and hybrids had high survival rates, with over 90% survival during the 

126-day study. Hybrids grew faster than walleyes at lengths under 325mm, but walleyes 

reached the minimum market weight (681g) 31 days sooner than hybrids. 

Siegwarth & 

Summerfelt 

(1993) 
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 Hybrid 

walleye 

walleyes (Stizostedion 

vitreum) and saugers 

(S. canadense)  

The W × S hybrids showed significantly greater weight gain, length gain, and condition 

factors compared to purebred walleyes and S × W hybrids. W × S hybrids exhibited less 

aggressive behavior and were less affected by routine disturbances and handling, 

making them easier to manage in an intensive culture setting. S × W hybrids had lower 

egg survival (48.0%). 

Malison et 

al. (1990) 

Pangasiidae Hybrid catfish Pangasianodon 

hypophthalmus x 

Pangasius bocourti 

The hybrid fish exhibited significantly lower growth rates and survival compared to the 

parental species. Specific growth rate for hybrid was 0.60% compared to maternal 

(1.23%) and paternal (1.20%). Hybrids showed higher crude protein (74.74%) but lower 

lipid content (15.64%). 

Hatachote 

et al. (2015) 

Paralichthyidae Hybrid 

flounder 

Platichthys stellatus x 

Kareius bicoloratus 

The hybrid larvae develop to a larger size and settle later than P. stellatus, but develop 

with a smaller size and settle earlier than the larvae of K. bicoloratus. Hybrids exhibit 

euryhaline characteristics similar to those of P. stellatus 

Yamashita et 

al. (2014) 

 Hybrid 

flounder 

Paralichthys olivaceus 

x P. dentatus 

hybrid flounder showed superior growth rates and temperature tolerance. Slow 

development of gastric digestion and earlier formation of pyloric ceca. the survival rates 

of hybrid flounder larvae through metamorphosis were low (approximately 30% 

compared to 70% in P. olivaceus). 

Yu et al. 

(2010) 

 Hybrid 

flounder 

Paralichthys olivaceus 

x P. dentatus 

no obvious heterosis during 64 days in the three crosses (Po x Pd, Fo x Po, Fo x Pd). the 

hybrids of Po x Pd demonstrated positive heterosis in growth and high temperature 

tolerance after 196dph. 

Sui et al. 

(2013) 

 Hybrid 

flounder 

Paralichthys olivaceus 

x Verasper variegatus 

Low percentage fertilization and hatching but high percentage of early survival.  Kim et al. 

(1996) 

 Hybrid 

flounder 

Verasper variegatus 

Paralichthys olivaceus 

Low percentage of fertilization rate and no hatching  Kim et al. 

(1996) 

Salmonidae Hybrid 

salmon 

Salmo salar x Salmo 

trutta  

Hybrids between the two species displayed varying levels of susceptibility to 

Gyrodactylus salaris and Gyrodactylus derjavini based on the parental line, with 

resistance being influenced by the identity of the sire or dam. 

Bakke et al. 

(1999) 

 Hybrid 

salmon 

marble trout (Salmo 

marmoratus) and the 

brown trout (Salmo 

trutta) 

Hybrid offspring often showed better survival and growth rates than pure species, 

particularly in inter-specific competition. The hybrids were generally larger than both 

marble and brown trout in certain conditions, potentially indicating heterosis (hybrid 

vigor). 

Meldgaarda 

et al. (2007) 

 

Ethical Concerns 

 The ethical concerns surrounding fish hybridization 

breeding have raised significant attention among 

researchers, focusing on issues such as fish welfare, 

unintended consequences of genetic manipulation, and 

broader implications for natural ecosystems (Tiedje et al., 

1989; Snow et al., 2005; Mastor et al., 2025). These 

concerns are particularly relevant with the increasing use 

of CRISPR and other gene-editing technologies in 

aquaculture, sparking debate among genetic engineers 

and conservationists about the potential for creating 

invasive species or disrupting natural food webs (Martin et 

al., 2010; Erarto & Getahun, 2020). Developing ethical 

guidelines and regulatory frameworks that balance the 

benefits of hybrid fish breeding with the need to protect 

animal welfare and biodiversity is essential (Ahmed et al., 

2019; Cook et al., 2000). 

 

Regulatory Frameworks 

 Table 2 illustrates that regulations governing hybrid 

fish breeding and aquaculture vary significantly across 

regions, with some enforcing strict controls on genetically 

modified organisms (GMOs) and hybrids. The growing 

complexity of international trade agreements and 

environmental standards has further complicated the 

regulatory landscape, as some countries have adopted 

more stringent rules regarding the import and export of 

such species (FAO, 2020). Consequently, it is crucial for 

consumers to maintain open communication with 

regulatory bodies to stay informed about these evolving 

regulations (Leng, 2020; McMahon, 2020). 

 

Challenges and Limitations of Fish Hybridization 

Genetic Instability 

 One of the main challenges in fish hybridization is 

maintaining genetic stability across successive generations. 

Recent studies have emphasized the risks of genetic drift 

and the potential loss of desirable traits in hybrid 

populations, particularly when hybrids are produced over 

multiple generations without proper management (Ahmed 

et al., 2019; Cook et al., 2000). To address this issue, 

comprehensive monitoring and breeding programs must 

be implemented to ensure genetic stability. These 

programs should incorporate genomic tools and marker-

assisted selection (Kalueff et al., 2014; Coughlan et al., 

2020). Such approaches help sustain desirable traits in 

hybrids, ensuring their reliable performance in commercial 

production settings (Bartley et al., 2020; Briggs, 2002). 

 

Health and Welfare 

 Previous studies on fish hybridization have indicated 

that hybrid fish may be more susceptible to health issues, 

such as deformities or reduced fertility, which can 

negatively impact the efficiency of breeding programs 

(Krasnovyd et al., 2020; Bartley, 2021). The occurrence of 

deformities and other health problems is particularly 

common among hybrid offsprings, especially when raised 

under suboptimal conditions (Mitra et al., 2023; Franke et 

al., 2024). As a result, it is essential to closely monitor 

standard operating practices and breeding programs to 

ensure the production of high-quality hybrid progeny (Ye 

et al., 2024). This approach helps minimize health risks and 

improves the overall effectiveness of fish breeding efforts. 

 

Regulatory and Public Perception 

 Obtaining regulatory approval for fish hybridization 

and securing public acceptance can be difficult, especially 

in areas where scepticism about GMOs and other forms of 

genetic modification exists. Recent surveys of public 

opinion revealed significant variability in consumer 

acceptance of hybrid fish products, with some expressing 

concerns  over  the  safety  and  environmental  impact  of  
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Table 2: Regulatory frameworks for fish hybridization in various countries 

Country/Region Regulatory Body Key regulations Specific Guidelines for Hybridization References 

United States U.S. Fish and 

Wildlife Service 

(USFWS) 

National Environmental Policy Act 

(NEPA), Lacey Act, Endangered 

Species Act (ESA) 

This act focusing on conservation of threatened and endangered 

plants and animals. Hybridization requires environmental 

assessments; restrictions on hybrid species that may impact native 

populations 

National 

Aquaculture 

Act, 1980 

European 

Union 

European 

Commission (EC), 

Member States 

Common Fisheries Policy (CFP), EU 

Habitats Directive 

Focusing on sustainable management on fishing fleets and 

preserving fish stock. Hybrid species must comply with biodiversity 

and ecosystem protection guidelines; requires risk assessments 

Council 

Directive 

92/43/EEC 

China Ministry of 

Agriculture and 

Rural Affairs 

(MARA) 

Fisheries Law of the People's 

Republic of China 

The law is stipulate to enhance the protection, increasing and 

developing fishery resources. Strict regulations on the introduction 

and breeding of non-native species; licenses required for hybrid 

Fisheries Law 

of the 

People's 

Republic of 

China, 1986 

India Ministry of 

Fisheries, Animal 

Husbandry and 

Dairying 

Coastal Aquaculture Authority Act, 

2005 

This act encompasses the farming of aquatic life under controlled 

condition. Regulation of hybrid species in coastal aquaculture; 

guidelines for species introduction and environmental impact 

assessments 

Coastal 

Aquaculture 

Authority Act, 

2005 

Japan Ministry of 

Agriculture, 

Forestry and 

Fisheries (MAFF) 

Fisheries Law of Japan This act stipulates the basic framework of Japan’s Fishery policy 

which hybridization activities require permits; environmental impact 

and biodiversity conservation are key considerations 

Protection of 

Fisheries 

Resources Act, 

1951 

Norway Directorate of 

Fisheries 

Aquaculture Act, Nature Diversity 

Act 

Hybridization must adhere to strict environmental and biodiversity 

conservation guidelines; licensing required. This act established a 

governing framework for aquaculture industry in inland and marine 

waters including the provincial sea, EEZ and mainland shelf of 

Norway 

Aquaculture 

Act, 2005 

Russia Federal Agency 

for Fisheries 

(Rosrybolovstvo) 

Federal Law on Fisheries and 

Conservation of Aquatic Biological 

Resources 

Hybrid species breeding is strictly regulated; permits required, with a 

focus on conservation of native species. This law focusing on 

fisheries and conservation of aquatic biological resources which 

consisting of 65 articles 

Federal Law, 

2013 

Vietnam Ministry of 

Agriculture and 

Rural 

Development 

(MARD) 

Fisheries Law of Vietnam Regulations focus on preventing environmental degradation; 

hybridization must align with sustainable aquaculture practices. The 

law consists of two articles on 61 and 61 on illegal fishing which 

focusing on exploitation of fish 

Law on 

Fisheries, 2019 

South Africa Department of 

Environment, 

Forestry and 

Fisheries (DEFF) 

National Environmental 

Management Act (NEMA), Marine 

Living Resources Act 

Hybridization requires environmental impact assessments; specific 

guidelines to protect native biodiversity. This act focusing on 

providing co-operative environmental governance by principal 

affecting the environment 

Marine Living 

Resources Act, 

1998 

Brazil Ministry of 

Agriculture, 

Livestock, and 

Supply (MAPA) 

National Environmental Policy Act, 

Fisheries Law 

Hybrid breeding must comply with environmental protection laws; 

specific regulations for non-native species but more focusing on 

protection of migratory fish 

Sustainable 

Development 

Policy on 

Fisheries and 

Aquaculture, 

2009  

New Zealand Ministry for 

Primary 

Industries (MPI) 

Freshwater Fisheries Regulations 

1983, Subclause (2) Part 8A Schedule 

3 

Focusing on indigenous species management. Prohibition of noxious 

fish species (Schedule 3) including its subspecies, hybrids and 

variations of the species 

Fisheries Act, 

1996 

Australia Department of 

Agriculture, 

Water and the 

Environment 

(DAWE) 

Environment Protection and 

Biodiversity Conservation Act (EPBC 

Act) 

Hybrid species must undergo rigorous risk assessments; regulations 

to prevent impacts on native species and ecosystems. 

Biodiversity conservation refers to the protection, preservation, and 

management of ecosystems and natural habitats and ensuring that 

they are healthy and functional. To protect and preserve species 

diversity. To ensure sustainable management of the species and 

ecosystems. 

EPBC Act, 

1999 

Canada Fisheries and 

Oceans Canada 

(DFO) 

Fisheries Act, Species at Risk Act 

(SARA) 

Focusing on four categories which are endangered, threated, 

extirpated and special concern. Hybridization practices are regulated 

to protect native species; permits required for hybrid breeding 

activities. 

Section 73 of the Species at Risk Act ('SARA', the Act) sets out 

conditions that must be met before a competent minister can issue a 

permit for an activity affecting a listed wildlife species, any part of its 

critical habitat or the residences of its individuals.  

Fisheries Act, 

1985 

Thailand Department of 

Fisheries (DOF) 

Fisheries Act of Thailand Hybridization is regulated with a focus on preventing adverse 

environmental impacts and protecting native species. 

This Act lays down the general principles relating to fisheries. The 

104 Sections of the Act are divided into a title part (sections 1 to 5) 

and 11 Chapters: Fisheries Management (1); Fishery Zone (2); 

Promotion of Aquaculture (3); Standard of Fish or Fish Products (4); 

Importation and Exportation of Fish and Fish Products (5); Overseas 

Marine Fishery (6); Fees on license or Permit and Substitute (7); 

Transferability (8); Competent Official (9); Administrative Measure 

(10); Penalties (11). 

Fisheries Act, 

1947 



Int J Agri Biosci, 2026, 15(1): 29-42. 
 

37 

South Korea Ministry of 

Oceans and 

Fisheries (MOF) 

Fisheries Act, Environmental Impact 

Assessment Act 

Strict guidelines for hybrid species; environmental impact 

assessments are mandatory before breeding. 

The purpose of this Act is to promote environment-friendly, 

sustainable development and healthy and pleasant life of citizens by 

forecasting and assessing the environmental impacts of a plan or 

project and by formulating measures for environmental conservation 

when a plan or project that has an environmental impact is 

formulated and implemented. 

Environmental 

Impact 

Assessment 

Act, 1 

Malaysia Fisheries 

Department 

Malaysia 

Fisheries Act 1985 

Section 40(2) 

Please refer to the Malaysian 

Biosafety Law (Akta 678) which 

mentions crossing of species beyond 

their natural reproductive range.  

No specific regulations for fish hybridization but Part VIII, section 40 

(2) of the Fisheries Act 1985 on control the release of non-

indigenous fish species into the natural environment may govern 

this activity in Malaysia. 

Fisheries Act 

(No. 317 of 

1985) 1985 

 

genetically modified or hybridized fish (Pérez-Ramírez et 

al., 2020; Dayé et al., 2023). To address these challenges, 

the aquaculture industry needs to prioritize transparent 

communication and public education, emphasizing the 

benefits of hybrid fish while addressing concerns related to 

its safety and sustainability (Love et al., 2021). 

 

Future Directions and Innovations in Fish Hybridization 

 The future of fish hybridization is poised for significant 

advancements through the integration of cutting-edge 

genomic technologies such as CRISPR and other gene-

editing techniques (Charpentier, 2017; Yoon et al., 2023) 

which offer precise genetic modifications to enhance traits 

like disease resistance, environmental adaptability, 

improved growth rates, and higher survival rates (Snow et 

al., 2005; Ahmed et al., 2019; Cook et al., 2000). Despite 

these advancements, ethical and regulatory concerns 

surrounding gene-editing in aquaculture must be properly 

addressed. Alongside these technologies, selective 

breeding programs that leverage genomic selection and 

marker-assisted breeding are becoming increasingly 

important, enabling the accurate identification of desirable 

traits and improving breeding outcomes (Gjedrem et al., 

2020; Lal et al., 2024). As climate change continues to 

impact ecosystems, hybrid species such as tilapia and 

catfish are being developed to adapt to shifting 

environmental conditions, including changes in water 

temperature and salinity, ensuring the sustainability of 

global seafood production (Free et al., 2019). Furthermore, 

incorporating fish hybridization into sustainable 

aquaculture practices, such as multi-trophic systems and 

recirculating aquaculture systems (RAS), can significantly 

boost efficiency and reduce environmental impact, 

contributing to the long-term preservation of aquatic 

ecosystems (Troell et al., 2020; Salgotra and Chauhan 2023; 

Lal et al., 2024). 

 

Conclusion 

Fish hybridization offers a promising strategy for 

enhancing the productivity, resilience, and sustainability of 

aquaculture. By combining favourable traits from different 

species or strains, hybrid fish can deliver significant 

advantages, such as faster growth rates, improved disease 

resistance, and greater adaptability to environmental 

changes. Advances in genomic technologies, selective 

breeding, and sustainable farming practices have further 

amplified the potential of hybrid fish to contribute to 

global seafood security. However, the success of these 

breeding programs depends on careful management, 

comprehensive research, and responsible practices to 

address the potential risks and challenges associated with 

hybridization. As global seafood demand continues to rise, 

hybrid fish breeding is expected to play an increasingly 

crucial role in ensuring seafood security and fostering the 

development of sustainable aquaculture. 
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