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ABSTRACT  Article History 

Non-destructive techniques such as spectroscopy are widely used to authenticate the 

geographical origins of food and agricultural products. This study presents an integrated 

approach using shortwave near-infrared (SWNIR) spectroscopy, dimensionality reduction, and 

artificial neural networks (ANN) to authenticate Robusta coffee beans from four regions in 

Indonesia: Temanggung, Toraja, Dampit, and Lampung. Spectral data collected in the 954–1700 

nm range were transformed using three linear dimensionality reduction methods—principal 

component analysis (PCA), partial least squares (PLS), and linear discriminant analysis (LDA). The 

resulting feature sets were used to train ANN classifiers. PCA, PLS, and LDA score plots 

demonstrated clear clustering among coffee origins. Results show that the LDA–ANN 

combination achieved the highest classification accuracy of 100%, along with perfect values for 

precision, recall, specificity, and F1-score. In contrast, PCA–ANN and PLS–ANN reached 

accuracies of 97.9 and 96.2%, respectively. The ROC and AUC analysis further confirmed the 

superior separability of LDA-based classification, showing no overlap between sample classes. 

These findings highlight the potential of SWNIR spectroscopy combined with LDA and ANN for 

rapid, reliable, and non-destructive geographical authentication of Robusta coffee. 
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INTRODUCTION 

 

Coffee is one of the most widely consumed beverages 

worldwide and plays a vital role in the global economy 

(Torga & Spers, 2020). Among the two most commercially 

cultivated species, Arabica (Coffea arabica) and Robusta 

(Coffea canephora); Robusta has higher caffeine content 

and stronger taste (Davila & Sîrbu, 2021). However, the 

quality of coffee varies according to several factors, such as 

post-harvest processing methods (Velásquez & Banchón, 

2023), genetic variation, and environmental conditions 

(Ahmed et al., 2021). These factors influence coffee beans' 

physical and chemical composition, determining sensory 

attributes like aroma, flavor and appearance. Consequently, 

coffee originating from different geographic regions often 

commands different market values and consumer 

preferences due to its distinct characteristics (Abdu & 

Mutuku, 2021). Consumer awareness regarding product 

authenticity has increased significantly in recent years 

(Chousou & Mattas, 2019). Verification of the geographical 

origin of beans is crucial for the coffee industry in 

maintaining regional branding (Trihartono, 2022) and 

reducing the risk of mislabeling, which can impact consumer 

trust (Nunes et al., 2021). Ensuring the authenticity of coffee 

origin promotes fair trade, allows producers to charge 

premium prices (Wahyudi et al., 2020) and supports 

sustainable farming (Pratama & Wisika, 2022). Therefore, it 

is important to find efficient and reliable tools to 

authenticate the origins of coffee. 

Traditional methods for determining coffee origin can 

be done using sensory evaluation or conventional chemical 

analysis (Bessadaet al., 2018; Poláková et al., 2023). 

However, the methods are often time-consuming, 

destructive and require high equipment investment and 

analytical costs. In contrast, spectroscopic techniques offer 

a  non-destructive,  rapid  and  cost-effective  alternative  for  
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analyzing the quality parameters of food and agricultural 

products (Nawrocka & Lamorska, 2016). One of the 

spectroscopic methods is Near-Infrared (NIR) spectroscopy, 

which has been proven as a powerful analytical tool for 

qualitative and quantitative assessment of coffee 

(Munyendoet al., 2022). It captures the vibrational overtones 

and combinations of molecular bonds—particularly O–H, C–

H, and N–H— which reflect chemical constituents such as 

moisture, caffeine, chlorogenic acid, carbohydrate, lipids and 

sugars (Caporaso et al., 2018; Wei et al., 2021; Ayu et al., 2024). 

These spectral features serve as chemical fingerprints that 

distinguish coffee origins and cultivars (Malta et al., 2020). 

Several studies have reported on the use of NIR 

spectroscopy and various chemometric techniques for 

coffee classification. Giraudo et al. (2019) employed Fourier 

Transform NIR (FTNIR) spectroscopy combined with partial 

least squares discriminant analysis (PLS-DA) to classify 

green coffee beans based on continents and countries 

bases. Kurniawan et al. (2019) used FTNIR to discriminate 

Arabica Java coffee using principal component analysis 

(PCA) and discriminant analysis. Similarly, Yusmanizar & 

Munawar (2021) classified Arabica and Robusta coffee 

based on NIR spectra using linear discriminant analysis 

(LDA) and support vector machines (SVM). Other studies by 

Guerrero-Peña et al. (2023) employed PCA, hierarchical 

clustering (HC), and Soft Independent Modelling of Class 

Analogy (SIMCA) for the classification of regions and 

varieties. Pahlawan & Masithoh (2022) employed Visible-

NIR spectroscopy and PLS-DA for classification of Arabica 

and Robusta roasted coffee. These studies, nonetheless, rely 

on chemometric approaches to classify samples based on 

spectral features that may not fully reveal the nonlinear 

relationships embedded in complex spectral data (Yang et 

al., 2019). On the other hand, one of the nonlinear models, 

namely artificial neural networks (ANN), is capable of 

solving both supervised and unsupervised classification 

problems (Bhagya Raj & Dash, 2022). ANN models have 

been applied to food quality evaluation, including 

classification and prediction (Ikram et al., 2024), as well as 

food traceability (Liang et al., 2022).  

Despite the success of such methods for food products, 

limited studies have explored the combination of ANN 

models and multiple dimensionality reduction techniques, 

such as PCA, PLS, and LDA, for classifying Robusta coffee 

based on shortwave NIR (SWNIR) spectral data. 

Dimensionality reduction is a crucial pre-processing step for 

analyzing spectroscopic data, as it reduces the number of 

variables while retaining the most informative features 

(Nanga et al., 2021). In short, PCA is best for general 

dimensionality reduction without considering class labels; 

PLS is used for predictive modeling when class information 

is crucial, while LDA surpasses classification by maximizing 

class separability (Ayesha et al., 2020). Previous studies have 

reported on the implementation of dimensionality 

reduction and classification techniques. For instance, PCA 

with various classifiers such as SVM, k-NN, and BPNN were 

used to distinguish between Arabica and Robusta coffee 

using FTIR spectra (Zheng et al., 2014). FTNIR combined with 

multiple classifiers such as Self-Organizing Maps (SOM), 

SIMCA, and PLS-DA were used to discriminate Robusta 

coffee cultivar (Luna et al., 2017). Dharmawan et al. (2023b) 

used PCA with a multilayer perceptron ANN (MLP-ANN) to 

identify Arabica coffee origins. Nevertheless, studies 

comparing the effectiveness of various dimensionality 

reduction methods combined with ANN models for Robusta 

coffee origin classification are limited. Current research has 

focused on Arabica and green coffee beans, while Robusta 

coffee from diverse Indonesian origins has not been 

sufficiently studied. Moreover, the previous studies 

employed spectroscopic data obtained from NIR 

instruments at wavelengths 1000-2500 nm (Sim et al., 2024) 

or IR instruments at wavelengths 2500-4000 nm (Obeidat et 

al., 2018). The instrument used in this study is fiber optic 

spectroscopy which is portable and low-cost, which is 

affordable for small-scale coffee farmers or industries for 

their quality evaluation. The instrument has been used for 

grain such as coffee, soybean, and cocoa bean (Priambodo 

et al., 2022; Dharmawan et al., 2023; Abadi et al., 2024). 

Therefore, this study aims to evaluate the classification 

performance of ANN models using SWNIR spectra data 

1000–1700 nm, which was reduced by PCA, PLS, and LDA 

dimensionality reduction techniques. Robusta coffee 

samples from four locations in Indonesian, i.e., 

Temanggung, Toraja, Dampit, and Lampung, were analyzed 

to identify which technique combination best provides the 

most accurate and reliable authentication model to 

differentiate the coffee samples by geographic origin. 

 

MATERIALS & METHODS 

 

Spectral Acquisition 

A total of 2,400 spectral readings were collected from 

600 Robusta coffee beans (150 beans per origin), representing 

four geographic origins in Indonesia: Temanggung, Toraja, 

Dampit, and Lampung (Fig. 1). All beans were obtained from 

dry-processed coffee and were manually selected to ensure 

uniformity, with damaged beans removed. Prior to spectral 

acquisition, the beans were cleaned of residual endocarp 

(parchment layer) and surface contaminants. 

Spectral data were acquired using a shortwave near-

infrared (SWNIR) spectrometer (Ocean Optics, Orlando, FL, 

USA) with a wavelength range of 954–1700 nm at 6 nm 

intervals, resulting in 125 spectral variables after deleting the 

initial and last spectra, which were noisy. The setup included 

a tungsten halogen light source (HL-2000-HP-FHSA, 360–

2400 nm) and a reflectance fiber optic probe (QR400-7-VIS–

NIR, Ocean Optics), Fiber Connector SMA 905, nominal bulb 

power 20 W, typical output power 8.4 mW), and fiber optic 

cable reflection probe (Type: QR400-7-VIS-NIR Ocean 

Optics, wavelength range: 400-2100nm) (Prasetyo et al., 

2024). Fig. 2 illustrates the spectral acquisition setup used in 

this study, including probe alignment and sample 

positioning. White reference spectra were recorded using a 

white ceramic standard to ensure calibration, while black 

reference spectrum was obtained by switching off the light 

source (Dharmawan et al., 2023a). Raw spectral data were 

saved in .csv format for subsequent analysis. 

 

Dimensional Reduction 

Three linear dimensional reduction techniques—

Principal Component Analysis (PCA), Partial Least 

Squares (PLS),  and linear discriminant analysis (LDA)—were 
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Fig. 1: Locations of origin of four 

Robusta coffee beans with their 

corresponding coffee images. 

 

Fig. 2: Schematic of coffee 

reflectance acquisition using 

SWNIR spectroscopy. 

 

employed to reduce the high-dimensional spectral data 

into low-dimensional feature sets. PCA is an unsupervised 

method, while PLS and LDA are supervised methods that 

utilize a response Y-matrix representing the four Robusta 

coffee origins (Temanggung, Toraja, Dampit and 

Lampung). Each method transformed the spectral data into 

new variables (scores), which are linear combinations of the 

original spectra (Ayesha et al., 2020). These scores were 

then scaled using Z-score normalization. The 

dimensionality-reduced data were evaluated through score 

plot visualizations and the explained variance proportions. 

PCA and PLS retained the first four components, 

accounting for more than 95% of the total variance. Due to 

class limitations, LDA yielded a three-dimensional score 

matrix (number of classes—1). 

 

Development of ANN Classifier 

A Multilayer Perceptron (MLP) architecture was 

developed for classification, consisting of an input layer, two 

hidden layers, and an output layer. The number of input 

neurons varied depending on the dimensional reduction 

method: PCA and PLS used four nodes; LDA used three 

nodes) as shown in Table 1. Both hidden layers used the 

Rectified Linear Unit (ReLU) activation function with Glorot 

weight initialization. In contrast, the output layer used 

Softmax activation and He initialization to classify the 

samples into one of the four Robusta coffee origins. Target 

labels were encoded using one-hot encoding, assigning 

binary values (0 or 1) to each class: 0 = Temanggung, 1 = 

Toraja, 2 = Dampit, 3 = Lampung. 

K-fold cross-validation was applied to evaluate model 

generalizability. The dataset was divided into training (2/3) 

and testing (1/3) sets. During each k iteration, one subset 

was used for validation, while the remaining k–1 subset was 

used for training. The model's performance was assessed by 

calculating the mean and standard deviation of accuracy 

across all iterations (Xiong et al., 2020). 

 

Classifier Performance 

Loss and Accuracy Curves 

To evaluate the model’s learning behavior and 

generalization ability, accuracy and loss curves were plotted 

using the training data obtained through cross-validation 

(Novtahaning  et  al.,  2022).  The  accuracy curve reflects the  
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Table 1: Structure of ANN classifier 

Name of layers Number of Neurons (nodes) Activation function Weight initialization Other parameters 

PCA PLS LDA 

Input layer 4 4 3    Loss function = Categorical cross-entropy 

 Optimizer = Adam  

 Validation control = Metric 'Accuracy' 

 Number of epochs = 100 

 Batch size = 100 

 Callback function = EarlyStopping 

Hidden layer 1 6 6 6 ReLU* Glorot 

Hidden layer 2 6 6 6 ReLU Glorot 

Output layer  4 4 4 Softmax He 

*ReLU = rectified linear unit 

 

model’s ability to correctly classify samples by comparing 

the predicted outputs with actual labels. In contrast, the loss 

curve quantifies the classification error during training. A 

high loss value indicates poor model performance due to 

significant misclassification, while high accuracy corresponds 

to a lower error rate and better predictive performance. 

These visualizations provide insight into whether the model 

is learning effectively or overfitting the training data. 

 

Confusion Matrix and Classification Metrics 

The confusion matrix in Fig. 3 was used to evaluate the 

performance of the classification models. A confusion 

matrix provides a summary of a classifier’s predictive 

performance by comparing the predicted class labels with 

the actual (true) labels of the dataset (Ahad et al., 2023). In 

this matrix, the predicted targets represent the class labels 

assigned by the model, while the actual targets represent 

the original class labels of the coffee samples. 

 

 
 

Fig. 3: Four-class confusion matrix. 
 

These values are extracted from Table 2 to assess the 

classification accuracy and error types. The confusion matrix 

serves as a reliable diagnostic tool for understanding model 

performance beyond overall accuracy, especially in multi-

class classification tasks (Géron, 2019). 

The performance of the classification model was 

evaluated using several standard metrics based on the 

confusion matrix (De Diego et al., 2022). Accuracy (AC), or 

the classification rate or non-error rate, represents the 

proportion of correctly classified samples out of the total 

number of samples calculated as in Equation 1. The error 

rate (ER) is the complementary accuracy index, indicating 

the proportion of misclassified samples, calculated as shown 

in Equation 2. An ideal classifier yields an accuracy close to 

100% and an error rate near 0%. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                   Equation 1 

 

 𝐸𝑟𝑟𝑜𝑟_𝑟𝑎𝑡𝑒 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                             Equation 2 

 

The Recall (RE), also known as sensitivity, measures the 

model’s ability to correctly identify positive samples. 

Precision (PR) represents the proportion of correctly 

identified positive samples out of all samples predicted as 

positive. Specificity (SP) indicates the model’s ability to 

correctly classify negative samples. The RE, PR, and SP are 

calculated using Equation 3, 4, and 5. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                           Equation 3 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                           Equation 4 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃+𝐹𝑃
                                           Equation 5 

 

An additional metric used in this study is the F1-score, 

which is the harmonic mean of Precision and Recall. It 

provides a balanced classification performance measure, 

especially in imbalanced datasets. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     Equation 5 

 

In general, Recall, Precision and Specificity are 

considered good when they approach 100%. For the F1-

score, a perfect classification corresponds to a value of 1.0, 

while a score closer to 0.0 indicates poor performance. 

 

ROC and AUC Value 

The classifier's performance was further assessed by 

visualizing the Receiver Operating Characteristic (ROC) 

curve and calculating the Area Under the Curve (AUC) 

(Aguilar-Ruiz & Michalak, 2022). The ROC curve is a 

graphical representation that plots the True Positive Rate 

(TPR) (or Sensitivity/Recall) on the y-axis against the False 

Positive Rate (FPR) on the x-axis (Carrington et al., 2022). 

The True Negative Rate (TNR), also referred to as specificity, 

represents the proportion of negative samples correctly 

classified as negative. The False Positive Rate (FPR) is the 

proportion of negative samples incorrectly classified as 

positive, and it is mathematically expressed as [1 - TNR]. 

Consequently, the ROC curve visualizes Sensitivity (Recall) 

versus [1 - specificity]. 

A classification model is considered poor if its ROC 

curve is close to the baseline, which is represented by the 

diagonal line that connects the points (0, 0) and (1, 1). A 

model is superior if the curve is near the top-left corner, 

approaching the point (0,1) (Bowers & Zhou, 2019). 

The AUC quantifies the classifier's overall performance 

by summarizing the ROC curve into a single numerical value. 

The AUC ranges from 0 to 1, where a higher value indicates 

better model performance. An AUC value of 0.5 suggests a 

model with no discrimination ability (similar to random 

guessing), while an AUC value approaching 1.0 indicates a 

strong  ability  to  separate  classes (Bowers & Zhou, 2019).  
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Table 2: Determination of TP, TN, FP, and FN  

Class C1 C2 C3 C4 

Temanggung Toraja Dampit Lampung 

TP T1 T2 T3 T4 

TN T2 + T3 + T4 + F23 + F24 + F32 + 

F34 + F42 + F43 

T1 + T3 + T4 + F13 + F14 + F31 

+ F41 + F34 + F43 

T1 + T2 + T4 + F12 + F14 + F21 + F24 

+ F41 + F42 

T1 + T2 + T3 + F12 + F13 + F21 + F23 + 

F31 + F32 

FP F21 + F31 + F41 F12 + F32 + F42 F13 + F23 + F43 F14 + F24 + F34 

FN F12 + F13 + F14 F21 + F23 + F24 F31 + F32 + F34 F41 + F42 + F43 

 

 

Fig. 4: Profile of Shortwave NIR 

of (a) all original spectra, (b) 

average spectra, and c) average 

Savitzky-Golay 1st Derivative 

PCA, PLS, and LDA. 

 

 

Therefore, a good classification model will have an AUC 

greater than 0.5 and will lie above the diagonal baseline of 

the ROC curve (Aguilar-Ruiz & Michalak, 2022). 

 

RESULTS & DISCUSSION 

 

Spectra Visualization 

Reflectance data for Robusta coffee from four regions 

in Indonesia were collected using a SWNIR spectrometer 

operating within the wavelength range of 954–1700nm, 

resulting in 126 spectral variables. Fig. 4a shows all original 

spectra, while Fig. 4b shows average spectra of four Robusta 

coffees for four regions. When analyzing the average 

spectra (Fig. 4b), the spectra were very similar over most of 

the range, except in some wavelength regions where the 

differences were noticeable. While the average spectra of 

the Robusta Lampung and Toraja overlap, Temanggung and 

Dampit show some differences in reflectance intensity. The 

difference between Lampung and Toraja varieties was not 

evident because their spectra overlapped, indicating that they 

had similar spectrochemical characteristics. Temanggung and 

Dampit coffee exhibit higher reflectance compared to 

Lampung and Toraja coffee across the wavelength range. 

This variation suggests differences in chemical composition 

among samples (Pandiselvam et al., 2022).  

By applying Savitzky-Golay 1st Derivative to the 

original spectra several significant reflectance bands were 

more observable in the spectra between 900-1700nm. 

According to (Barbin et al., 2014), absorption of groups CH, 

C = C-H, H2O, CH3, CH2, RNH, and ROH related to 

carbohydrates, water, lipids, proteins, aromatics, 

chlorogenic acid, and caffeine present in those regions. 

Notably, there are prominent absorption bands 

corresponding to the CH stretching overtones at around 

1200nm related to acidity (Ribeiro et al., 2011) and NH 

stretch of primary amines at 1400nm (Weyer & Lo, 2006). 

Lampung coffee exhibits the lowest reflectance or the 

highest absorbance compared to other varieties, particularly 

at 1450 nm, which is associated with the presence of 

carbohydrates, chlorogenic acids, and lipids in coffee 

(Baqueta et al., 2023) and OH stretching of water content 

(Barbin et al., 2014). Furthermore, the first overtone of O–H 

and N–H stretching, which relates to amino acids and 

chlorogenic acids, was observed at 1579nm (Chakravartula 

et al., 2022) and 1672 nm related to caffeine (Barbin et al., 

2014). The spectral differences can be used to characterize 

and discriminate between coffee origins based on their 

unique NIR spectral fingerprints, which are directly linked to 

the functional groups involved (Giraudo et al., 2019). The 

bitterness of Robusta coffee, largely related to the levels of 

caffeine and chlorogenic acid (Ban et al., 2025), can be 

traced to these spectral features. This spectral information 

is valuable for understanding the chemical composition of 

Robusta coffee and can be applied in quality control. 

To investigate the differences between Robusta coffee 

origins, PCA, PLS and LDA analyses were conducted. PCA 

was evaluated by plotting the first two principal 

components based on spectral characteristics. Fig. 5a 

displays a two-dimensional PCA score plot for four Robusta 

coffee origins (Temanggung, Toraja, Dampit, and Lampung), 

illustrating clear groupings based on their chemical and 

compositional similarities. The first two principal 

components, PC1 and PC2, explained 98.28% and 1.15% of 

the total variance, respectively, accounting for a total of 

99.43% of the variance. Similar results reported by 

(Yusmanizar & Munawar, 2021) which use PC1 and PC2 to 

classify another variety of Indonesia coffee from Sumatra 

region. Fig. 5b shows the PLS score plot (Latent Variable 1 

(LV1) vs. LV2). The separation of the coffee origins is evident, 

with the PLS components creating distinct boundaries 

between the groups, suggesting effective discrimination. 

LV1 accounted for 90.23% of the variance, while LV2 

contributed 8.38%, resulting in an overall explained variance 

of 98.61%. The use of PLS to classify Indonesian coffee is 

more distinct that the one used to classify coffee from 

various countries such as Columbia, Ethiopia, India, 

Indonesia, and Nicaragua (Núñez et al., 2020).  

Both PCA and PLS models successfully classify 

Indonesia coffee origin. The samples formed two distinct 

groups along PC1 and LV1: one group, composed of 

Temanggung and Dampit, had positive scores, while the 

other, consisting of Toraja and Lampung, had negative 

scores. This separation is evident in the two-dimensional 

plots,  where  at  PC2 and  LV2,  the Temanggung and Toraja  
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Fig. 5: Plots of PC scores from 

original spectra based on (a) PCA, 

(b) PLS, and (c) LDA models. 

 

samples shift to a negative score. At the same time, Dampit 

and Lampung move to a positive score. The spatial 

distribution of the samples suggests significant chemical 

compositional differences between these origins (Yusibani 

et al., 2023; Yani & Utomo, 2025), with the spectral 

characteristics of each origin contributing to the separation. 

LDA demonstrated superior performance compared to 

PCA and PLS by providing the maximum separability of the 

classes and effectively drawing decision boundaries 

between the sample groups. Similar work was conducted by 

(Suhandy & Yulia, 2018) to classify Luwak coffee, obtaining 

100% accuracy using LDA. LDA works by minimizing within-

class variance and maximizing between-class variance 

(Ansari et al., 2025). As shown in Fig. 4c, the LDA score plot 

(LD1 vs. LD2) reveals a more clustered grouping of the 

coffee origins, with Dampit distinctly positioned away from 

the other samples along the positive score of LD1. The 

different origins—Temanggung, Toraja, and Lampung—are 

placed along the negative score of LD1, with further 

separation along LD2. Lampung, for example, is positioned 

away from the other samples along with the negative score 

of LD2, while Temanggung and Toraja are placed along with 

the positive score. The relatively small distance between 

Temanggung and Toraja suggests spectral similarities 

between these two origins. Overall, LDA provided a clearer 

separation and a more coherent interpretation of the data 

than PCA and PLS. 

In addition to the score plots, PCA and PLS loading 

plots were examined to assess the contributions of different 

wavelengths to the variance in the data (Rismiwandira et al., 

2020). The loading matrix helps to identify which variables 

contribute most to each component. Fig. 6 shows the loading 

plots for the first two PCs and LVs. Significant contributions 

are marked by values far from the x = 0 axis (either positive 

or negative), indicating that certain wavelengths strongly 

influence the principal components and, consequently, the 

separation between the samples. For PC1 (Fig. 6a), the 

significant wavelengths for sample distinction ranged from 

940 to 1350nm (positive contribution) and from 1350 to 

1700 nm (negative contribution). These contributions 

facilitated the separation of the Temanggung and Dampit 

samples from the Toraja and Lampung samples. The sample 

separation based on PC2 further refined this classification. 

Similarly, PLS LV1 (Fig. 6b) displayed high positive 

contributions between 940 and 1370nm, with negative 

contributions from the remaining wavelengths (1370–1700 

nm), helping separate the Temanggung and Dampit 

samples from the Toraja and Lampung samples. The 

contribution of LV2 was particularly useful for differentiating 

the Temanggung and Dampit samples. 

The PCA and PLS loading plots (Fig. 6) reveal 

distinctive peaks and valleys at specific wavelengths, 

indicating significant chemical differences between the 

coffee origins. At Fig. 6a, PC1 explained 98.28% of the total 

variance in the original spectra, with peaks around 1300, 

1460 and 1650nm corresponding to chlorogenic acid 

(Correia et al., 2018), carbohydrates, chlorogenic acids, and 

lipids (Baqueta et al., 2023), water content (Barbin et al., 

2014), and caffeine (Barbin et al., 2014). PC2 explained 

1.15% of the variance, with additional peaks and valleys at 

1100 and 1200nm representing the second overtone of the 

CH functional group (Correia et al., 2018). These 

wavelengths contribute to the spectral differences 

observed across the coffee samples. 

The LV1 from the PLS model (Fig. 6b) shows a flattened 

curve with an S-shape in the loadings, while LV2 exhibited 

high peaks at 1400 and 1650 nm. The reflectance at these 

wavelengths primarily arises from CH and OH vibrations in 

the chemical groups present in the coffee samples, 

providing key insights into the chemical composition of the 

Robusta coffee samples (Zhang et al., 2025). 

The number of data variables in PCA and LDA was 

determined by evaluating the sorted eigenvalues. These 

eigenvalues are often expressed as percentages of the 

explained variance (Table 3). A higher cumulative 

percentage indicates a better model, as the eigenvalues 

closer to zero or with very low variance may suggest 

unimportant variables or potential linear dependencies in 

the data. These low-variance components likely do not 

contribute meaningfully to the data model, possibly 

reflecting extraneous factors influencing the observations 

(Brereton, 2009). 

 
Table 3: The proportion of explained variance (%) to determine the number 

of reduced features 

 Number of components (or k 

variables) 

1 2 3 4 

PCA Explained variance 98.28 1.15 0.26 0.18 

 Cummulative explained variance 98.28 99.43 99.69 99.87 

PLS Explained variance 90.23 8.38 0.85 0.22 

 Cummulative explained variance 90.23 98.61 99.46 99.68 

LDA Explained variance 51.78 26.79 21.44 × 

 Cummulative explained variance 51.78 78.57 100 × 

 

In contrast to PCA, the successive values of k in PLS do 

not necessarily decrease with each component calculated. 

This is because PLS models both the X (predictor) and Y 

(response) data simultaneously, using regression to 

establish a relationship between them (Brereton, 2009). To 

optimize the number of components (k) for classification 

studies,  cross-validation  is  a  commonly  used  method.  
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Fig. 6: The loading plots based 

on (a) PCA and (b) PLS models. 

 

 

Fig. 7: Accuracy and loss curves 

based on PCA, PLS, and LDA 

models. 

 

 

The correct number of PLS components is determined by 

selecting the k that results in the maximum accuracy, which 

is identified when the accuracy value stabilizes or increases 

with the addition of more components. 

 

Integration of Dimensional Reduction and Artificial 

Neural Networks (ANN)  

This section discusses the effectiveness of combining 

dimensional reduction techniques (PCA, PLS, and LDA) with 

artificial neural networks (ANN) in authenticating the origins 

of Robusta coffee. Fig. 7 illustrates the loss and accuracy 

curves during the cross-validation process, with the x-axis 

representing the number of epochs and the y-axis showing 

accuracy and loss percentages. These curves provide 

insights into the loss during training, quantifying the 

discrepancy between predicted and actual classes in the 

training set (Farhadpour et al., 2024). Accuracy, on the other 

hand, assesses the agreement between predicted and actual 

class. A lower loss signifies that the curve decreases 

significantly and flattens as it approaches 0.00 on the y-axis, 

while higher accuracy moves closer to 1.00. 

Fig. 7 shows that the loss and accuracy curves for PCA, 

PLS, and LDA follow similar trends. However, there are 

distinguishing features based on the smoothness of the 

curves, the number of epochs required to reach stability, 

and the final values of the loss curves. PCA and PLS 

exhibited fewer smooth curves compared to LDA. The LDA 

dataset yielded superior sample authentication. The 

findings contradicted those of Sornam & Vanitha (2018), 

which reported better accuracy for PCA-based networks 

  

A B 
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compared to LDA-based networks. Furthermore, the loss 

curves for the validation dataset were consistently lower 

than those for the training dataset, indicating that the 

model successfully learned from the training set (Wang et 

al., 2022). The validation dataset, therefore, contributed to 

generalization. All three curves were categorized as “good 

fit," with training and validation losses decreasing and 

stabilizing, with a minimal gap between the two final loss 

values. Continuing training beyond this point could lead to 

overfitting, where the model performs well on training data 

but struggles with new data, as indicated by an increasing 

gap between the two curves. According to the loss curves in 

Fig. 7, no overfitting was observed, as the training and 

validation datasets were appropriately split. 

A superior model will flatten the loss curve, ideally 

achieving a value of 0.00 on the y-axis. Compared to PCA 

and PLS, LDA performed excellently when combined with 

the ANN model. The loss curve for LDA reached the 

threshold value of 0.00, while the PLS and PCA curves did 

not closely approach this threshold until the final epochs. 

Additionally, the LDA accuracy curve reached a threshold of 

1.00 more rapidly, stabilizing after approximately 10 epochs, 

demonstrating superior classification performance 

compared to PCA and PLS. 

The classifier's performance was further evaluated 

using several metrics. These metrics help assess how well 

the classifier performs in terms of classification success. The 

confusion matrix, computed from the split datasets (training 

and testing), was used to calculate performance metrics, 

including accuracy, error rate, specificity, precision, recall, 

and F1-score. The results are shown in Table 4, which 

demonstrates that the ANN model effectively distinguished 

between Robusta coffee origins. The combination of ANN 

with PCA, PLS, and LDA produced different classification 

accuracies, with LDA achieving the highest accuracy (100%), 

while PCA and PLS reached <98 and <97%, respectively. 

The ROC curve and AUC value were used to further 

evaluate the model's performance and assess its ability to 

differentiate between sample groups. The ROC curve is a 

probability curve, and the AUC represents the degree of 

separability between classes (Aguilar-Ruiz & Michalak, 

2022). 

Fig. 8 shows the ROC curves and AUC values for the 

combination of ANN with PCA, PLS, and LDA. The 

distributions in PCA and PLS showed overlaps, indicating 

potential errors in distinguishing between the four coffee 

origins. For example, the AUC for Temanggung was 0.99 in 

PCA and 0.98 in PLS, indicating that the model could 

distinguish between Temanggung and the other samples 

with 99% and 98% accuracy, respectively. In contrast, LDA 

showed no overlap between the curves, demonstrating a 

perfect separability of the four coffee samples, indicating 

that the ANN model, in combination with LDA, achieved 

the most accurate distinction between the positive and 

negative classes. 
 

Table 4: Results of the confusion matrix and evaluation metrics from 

testing data 

 Confusion matrix TP TN FP FN Average (%) 

  Te To Da La     AC SP PR RE FS ER 

PCA Te 189 6 5 0 189 572 20 11 97.9 98.6 95.9 95.9 1.0 2.1 

 To 6 167 0 0 167 612 7 6       

 Ma 9 0 204 1 204 573 5 10       

 La 5 1 0 199 199 586 1 6       

PLS Te 172 8 8 0 172 576 28 16 96.2 97.5 92.5 92.4 0.9 3.8 

 To 14 181 0 9 181 577 11 23       

 Ma 12 0 192 0 192 576 12 12       

 La 2 3 4 187 187 587 9 9       

LDA Te 200 0 0 0 200 592 0 0 100 100 100 100 0.1 0.0 

 To 0 192 0 0 192 600 0 0       

 Ma 0 0 204 0 204 588 0 0       

 La 0 0 0 196 196 596 0 0       

TP = true positive, TN = true negative, FP = FN = Te = Temanggung, To = 

Toraja, Da = Dampit, La = Lampung; AC = accuracy, SP = specificity, PR = 

precision, RE = recall, FS = F1-score, and ER = error rate. 

 

Conclusion 
This research demonstrates the effectiveness of 

combining Shortwave Near-Infrared (SWNIR) spectroscopy 

with various dimensional reduction techniques (PCA, PLS, 

and LDA) and an Artificial Neural Network (ANN) classifier 

to authenticate the origins of Indonesia Robusta coffee. The 

results revealed that the combination of LDA and ANN 

achieved the highest classification accuracy (100%), 

highlighting its superior class separability and prediction 

reliability. 

Future studies should include a broader and more 

diverse set of coffee samples, incorporating additional 

origins and varieties to improve the generalizability and 

robustness of the proposed model. Expanding the spectral 

range and exploring advanced machine learning 

techniques, such as Convolutional Neural Networks (CNN), 

may also yield higher accuracy and further refine 

classification performance. Furthermore, this approach 

holds promise for adaptation to other agricultural products, 

offering potential applications in food traceability and 

quality assurance across various sectors. 

 

 
 

Fig. 8: The AUC and ROC curves. 
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