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ABSTRACT

Article History

Non-destructive techniques such as spectroscopy are widely used to authenticate the
geographical origins of food and agricultural products. This study presents an integrated
approach using shortwave near-infrared (SWNIR) spectroscopy, dimensionality reduction, and
artificial neural networks (ANN) to authenticate Robusta coffee beans from four regions in
Indonesia: Temanggung, Toraja, Dampit, and Lampung. Spectral data collected in the 954-1700
nm range were transformed using three linear dimensionality reduction methods—principal
component analysis (PCA), partial least squares (PLS), and linear discriminant analysis (LDA). The
resulting feature sets were used to train ANN classifiers. PCA, PLS, and LDA score plots
demonstrated clear clustering among coffee origins. Results show that the LDA-ANN
combination achieved the highest classification accuracy of 100%, along with perfect values for
precision, recall, specificity, and F1-score. In contrast, PCA-ANN and PLS-ANN reached
accuracies of 97.9 and 96.2%, respectively. The ROC and AUC analysis further confirmed the
superior separability of LDA-based classification, showing no overlap between sample classes.
These findings highlight the potential of SWNIR spectroscopy combined with LDA and ANN for
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rapid, reliable, and non-destructive geographical authentication of Robusta coffee.

Keywords: Artificial neural network; Geographical origin; PCA; PLS; LDA

INTRODUCTION

Coffee is one of the most widely consumed beverages
worldwide and plays a vital role in the global economy
(Torga & Spers, 2020). Among the two most commercially
cultivated species, Arabica (Coffea arabica) and Robusta
(Coffea canephora); Robusta has higher caffeine content
and stronger taste (Davila & Sirbu, 2021). However, the
quality of coffee varies according to several factors, such as
post-harvest processing methods (Velasquez & Banchon,
2023), genetic variation, and environmental conditions
(Ahmed et al., 2021). These factors influence coffee beans'
physical and chemical composition, determining sensory
attributes like aroma, flavor and appearance. Consequently,
coffee originating from different geographic regions often
commands different market values and consumer
preferences due to its distinct characteristics (Abdu &
Mutuku, 2021). Consumer awareness regarding product
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authenticity has increased significantly in recent years
(Chousou & Mattas, 2019). Verification of the geographical
origin of beans is crucial for the coffee industry in
maintaining regional branding (Trihartono, 2022) and
reducing the risk of mislabeling, which can impact consumer
trust (Nunes et al.,, 2021). Ensuring the authenticity of coffee
origin promotes fair trade, allows producers to charge
premium prices (Wahyudi et al, 2020) and supports
sustainable farming (Pratama & Wisika, 2022). Therefore, it
is important to find efficient and reliable tools to
authenticate the origins of coffee.

Traditional methods for determining coffee origin can
be done using sensory evaluation or conventional chemical
analysis (Bessadaet al, 2018; Poldkova et al, 2023).
However, the methods are often time-consuming,
destructive and require high equipment investment and
analytical costs. In contrast, spectroscopic techniques offer
a non-destructive, rapid and cost-effective alternative for
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analyzing the quality parameters of food and agricultural
products (Nawrocka & Lamorska, 2016). One of the
spectroscopic methods is Near-Infrared (NIR) spectroscopy,
which has been proven as a powerful analytical tool for
qualitative and quantitative assessment of coffee
(Munyendoet al., 2022). It captures the vibrational overtones
and combinations of molecular bonds—particularly O-H, C-
H, and N-H— which reflect chemical constituents such as
moisture, caffeine, chlorogenic acid, carbohydrate, lipids and
sugars (Caporaso et al., 2018; Wei et al., 2021; Ayu et al., 2024).
These spectral features serve as chemical fingerprints that
distinguish coffee origins and cultivars (Malta et al., 2020).

Several studies have reported on the use of NIR
spectroscopy and various chemometric techniques for
coffee classification. Giraudo et al. (2019) employed Fourier
Transform NIR (FTNIR) spectroscopy combined with partial
least squares discriminant analysis (PLS-DA) to classify
green coffee beans based on continents and countries
bases. Kurniawan et al. (2019) used FTNIR to discriminate
Arabica Java coffee using principal component analysis
(PCA) and discriminant analysis. Similarly, Yusmanizar &
Munawar (2021) classified Arabica and Robusta coffee
based on NIR spectra using linear discriminant analysis
(LDA) and support vector machines (SVM). Other studies by
Guerrero-Pefa et al. (2023) employed PCA, hierarchical
clustering (HC), and Soft Independent Modelling of Class
Analogy (SIMCA) for the classification of regions and
varieties. Pahlawan & Masithoh (2022) employed Visible-
NIR spectroscopy and PLS-DA for classification of Arabica
and Robusta roasted coffee. These studies, nonetheless, rely
on chemometric approaches to classify samples based on
spectral features that may not fully reveal the nonlinear
relationships embedded in complex spectral data (Yang et
al., 2019). On the other hand, one of the nonlinear models,
namely artificial neural networks (ANN), is capable of
solving both supervised and unsupervised classification
problems (Bhagya Raj & Dash, 2022). ANN models have
been applied to food quality evaluation, including
classification and prediction (lkram et al., 2024), as well as
food traceability (Liang et al.,, 2022).

Despite the success of such methods for food products,
limited studies have explored the combination of ANN
models and multiple dimensionality reduction techniques,
such as PCA, PLS, and LDA, for classifying Robusta coffee
based on shortwave NIR (SWNIR) spectral data.
Dimensionality reduction is a crucial pre-processing step for
analyzing spectroscopic data, as it reduces the number of
variables while retaining the most informative features
(Nanga et al, 2021). In short, PCA is best for general
dimensionality reduction without considering class labels;
PLS is used for predictive modeling when class information
is crucial, while LDA surpasses classification by maximizing
class separability (Ayesha et al., 2020). Previous studies have
reported on the implementation of dimensionality
reduction and classification techniques. For instance, PCA
with various classifiers such as SVM, k-NN, and BPNN were
used to distinguish between Arabica and Robusta coffee
using FTIR spectra (Zheng et al., 2014). FTNIR combined with
multiple classifiers such as Self-Organizing Maps (SOM),
SIMCA, and PLS-DA were used to discriminate Robusta
coffee cultivar (Luna et al., 2017). Dharmawan et al. (2023b)
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used PCA with a multilayer perceptron ANN (MLP-ANN) to
identify Arabica coffee origins. Nevertheless, studies
comparing the effectiveness of various dimensionality
reduction methods combined with ANN models for Robusta
coffee origin classification are limited. Current research has
focused on Arabica and green coffee beans, while Robusta
coffee from diverse Indonesian origins has not been
sufficiently studied. Moreover, the previous studies
employed spectroscopic data obtained from NIR
instruments at wavelengths 1000-2500 nm (Sim et al., 2024)
or IR instruments at wavelengths 2500-4000 nm (Obeidat et
al, 2018). The instrument used in this study is fiber optic
spectroscopy which is portable and low-cost, which is
affordable for small-scale coffee farmers or industries for
their quality evaluation. The instrument has been used for
grain such as coffee, soybean, and cocoa bean (Priambodo
et al, 2022; Dharmawan et al., 2023; Abadi et al., 2024).
Therefore, this study aims to evaluate the classification
performance of ANN models using SWNIR spectra data
1000-1700 nm, which was reduced by PCA, PLS, and LDA
dimensionality reduction techniques. Robusta coffee
samples from four locations in Indonesian, i.e,
Temanggung, Toraja, Dampit, and Lampung, were analyzed
to identify which technique combination best provides the
most accurate and reliable authentication model to
differentiate the coffee samples by geographic origin.

MATERIALS & METHODS

Spectral Acquisition

A total of 2,400 spectral readings were collected from
600 Robusta coffee beans (150 beans per origin), representing
four geographic origins in Indonesia: Temanggung, Toraja,
Dampit, and Lampung (Fig. 1). All beans were obtained from
dry-processed coffee and were manually selected to ensure
uniformity, with damaged beans removed. Prior to spectral
acquisition, the beans were cleaned of residual endocarp
(parchment layer) and surface contaminants.

Spectral data were acquired using a shortwave near-
infrared (SWNIR) spectrometer (Ocean Optics, Orlando, FL,
USA) with a wavelength range of 954-1700 nm at 6 nm
intervals, resulting in 125 spectral variables after deleting the
initial and last spectra, which were noisy. The setup included
a tungsten halogen light source (HL-2000-HP-FHSA, 360-
2400 nm) and a reflectance fiber optic probe (QR400-7-VIS-
NIR, Ocean Optics), Fiber Connector SMA 905, nominal bulb
power 20 W, typical output power 8.4 mW), and fiber optic
cable reflection probe (Type: QR400-7-VIS-NIR Ocean
Optics, wavelength range: 400-2100nm) (Prasetyo et al.,
2024). Fig. 2 illustrates the spectral acquisition setup used in
this study, including probe alignment and sample
positioning. White reference spectra were recorded using a
white ceramic standard to ensure calibration, while black
reference spectrum was obtained by switching off the light
source (Dharmawan et al,, 2023a). Raw spectral data were
saved in .csv format for subsequent analysis.

Dimensional Reduction

Three linear dimensional reduction techniques—
Principal Component Analysis (PCA), Partial Least
Squares (PLS), and linear discriminant analysis (LDA)—were
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employed to reduce the high-dimensional spectral data
into low-dimensional feature sets. PCA is an unsupervised
method, while PLS and LDA are supervised methods that
utilize a response Y-matrix representing the four Robusta
coffee origins (Temanggung, Toraja, Dampit and
Lampung). Each method transformed the spectral data into
new variables (scores), which are linear combinations of the
original spectra (Ayesha et al, 2020). These scores were
then scaled using Z-score normalization. The
dimensionality-reduced data were evaluated through score
plot visualizations and the explained variance proportions.
PCA and PLS retained the first four components,
accounting for more than 95% of the total variance. Due to
class limitations, LDA yielded a three-dimensional score
matrix (number of classes—1).

Development of ANN Classifier

A Multilayer Perceptron (MLP) architecture was
developed for classification, consisting of an input layer, two
hidden layers, and an output layer. The number of input
neurons varied depending on the dimensional reduction
method: PCA and PLS used four nodes; LDA used three
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Fig. 1: Locations of origin of four
Robusta coffee beans with their
corresponding coffee images.

Fig. 2: Schematic of coffee
reflectance  acquisition  using
SWNIR spectroscopy.

Classification

nodes) as shown in Table 1. Both hidden layers used the
Rectified Linear Unit (ReLU) activation function with Glorot
weight initialization. In contrast, the output layer used
Softmax activation and He initialization to classify the
samples into one of the four Robusta coffee origins. Target
labels were encoded using one-hot encoding, assigning
binary values (0 or 1) to each class: 0 = Temanggung, 1 =
Toraja, 2 = Dampit, 3 = Lampung.

K-fold cross-validation was applied to evaluate model
generalizability. The dataset was divided into training (2/3)
and testing (1/3) sets. During each k iteration, one subset
was used for validation, while the remaining k-1 subset was
used for training. The model's performance was assessed by
calculating the mean and standard deviation of accuracy
across all iterations (Xiong et al., 2020).

Classifier Performance
Loss and Accuracy Curves

To evaluate the model's learning behavior and
generalization ability, accuracy and loss curves were plotted
using the training data obtained through cross-validation
(Novtahaning et al., 2022). The accuracy curve reflects the
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Table 1: Structure of ANN classifier
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Name of layers Number of Neurons (nodes) Activation function

Weight initialization ~ Other parameters

Batch size = 100

PCA PLS LDA
Input layer 4 4 3 . Loss function = Categorical cross-entropy
Hidden layer 1 6 6 6 RelLU* Glorot . Optimizer = Adam
Hidden layer 2 6 6 6 RelLU Glorot . Validation control = Metric 'Accuracy’
Output layer 4 4 4 Softmax He . Number of epochs = 100
L]
L]

Callback function = EarlyStopping

*ReLU = rectified linear unit

model’s ability to correctly classify samples by comparing
the predicted outputs with actual labels. In contrast, the loss
curve quantifies the classification error during training. A
high loss value indicates poor model performance due to
significant misclassification, while high accuracy corresponds
to a lower error rate and better predictive performance.
These visualizations provide insight into whether the model
is learning effectively or overfitting the training data.

Confusion Matrix and Classification Metrics

The confusion matrix in Fig. 3 was used to evaluate the
performance of the classification models. A confusion
matrix provides a summary of a classifier's predictive
performance by comparing the predicted class labels with
the actual (true) labels of the dataset (Ahad et al., 2023). In
this matrix, the predicted targets represent the class labels
assigned by the model, while the actual targets represent
the original class labels of the coffee samples.
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Fig. 3: Four-class confusion matrix.

These values are extracted from Table 2 to assess the
classification accuracy and error types. The confusion matrix
serves as a reliable diagnostic tool for understanding model
performance beyond overall accuracy, especially in multi-
class classification tasks (Géron, 2019).

The performance of the classification model was
evaluated using several standard metrics based on the
confusion matrix (De Diego et al., 2022). Accuracy (AC), or
the classification rate or non-error rate, represents the
proportion of correctly classified samples out of the total
number of samples calculated as in Equation 1. The error
rate (ER) is the complementary accuracy index, indicating
the proportion of misclassified samples, calculated as shown
in Equation 2. An ideal classifier yields an accuracy close to
100% and an error rate near 0%.

TP+TN :
Accuracy = ————— Equation 1
TP+TN+FP+FN
FP+FN -
Error_rate = ————— Equation 2
TP+TN+FP+FN

The Recall (RE), also known as sensitivity, measures the
model's ability to correctly identify positive samples.

Precision (PR) represents the proportion of correctly
identified positive samples out of all samples predicted as
positive. Specificity (SP) indicates the model's ability to
correctly classify negative samples. The RE, PR, and SP are
calculated using Equation 3, 4, and 5.

Recall = —~ Equation 3
TP+FN

Precision = —— Equation 4

Specifity = TPTJ:VFP Equation 5

An additional metric used in this study is the F1-score,
which is the harmonic mean of Precision and Recall. It
provides a balanced classification performance measure,
especially in imbalanced datasets.

PrecisionxRecall

F1 — score = 2x Equation 5

Precision+Recall

In general, Recall, Precision and Specificity are
considered good when they approach 100%. For the F1-
score, a perfect classification corresponds to a value of 1.0,
while a score closer to 0.0 indicates poor performance.

ROC and AUC Value

The classifier's performance was further assessed by
visualizing the Receiver Operating Characteristic (ROC)
curve and calculating the Area Under the Curve (AUQ)
(Aguilar-Ruiz & Michalak, 2022). The ROC curve is a
graphical representation that plots the True Positive Rate
(TPR) (or Sensitivity/Recall) on the y-axis against the False
Positive Rate (FPR) on the x-axis (Carrington et al,, 2022).
The True Negative Rate (TNR), also referred to as specificity,
represents the proportion of negative samples correctly
classified as negative. The False Positive Rate (FPR) is the
proportion of negative samples incorrectly classified as
positive, and it is mathematically expressed as [1 - TNR].
Consequently, the ROC curve visualizes Sensitivity (Recall)
versus [1 - specificity].

A classification model is considered poor if its ROC
curve is close to the baseline, which is represented by the
diagonal line that connects the points (0, 0) and (1, 1). A
model is superior if the curve is near the top-left corner,
approaching the point (0,1) (Bowers & Zhou, 2019).

The AUC quantifies the classifier's overall performance
by summarizing the ROC curve into a single numerical value.
The AUC ranges from 0 to 1, where a higher value indicates
better model performance. An AUC value of 0.5 suggests a
model with no discrimination ability (similar to random
guessing), while an AUC value approaching 1.0 indicates a
strong ability to separate classes (Bowers & Zhou, 2019).
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Table 2: Determination of TP, TN, FP, and FN
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Class C1 c2 Cc4
Temanggung Toraja Dampit Lampung
™ T T2 T4

TN T2+ T3+ T4+ F23 +F24+F32+ T1+T3+T4+F13+F14+F31
F34 + F42 + F43 + F41 + F34 + F43

FP F21+ F31 + F41 F12 + F32 + F42

FN F12+F13 +F14 F21 + F23 + F24

T1+T2+T4+F12+F14 + F21 + F24 T1 + T2 + T3 + F12 + F13 + F21 + F23 +
+ F41 + F42

F13 + F23 + F43
F31 + F32 + F34

F31 + F32
F14 + F24 + F34
F41 + F42 + F43

Reflectance (%)

Reflectance (%]

e Fig. 4: Profile of Shortwave NIR
of (a) all original spectra, (b)
average spectra, and c) average
Savitzky-Golay 1%t Derivative
PCA, PLS, and LDA.
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Therefore, a good classification model will have an AUC
greater than 0.5 and will lie above the diagonal baseline of

the ROC curve (Aguilar-Ruiz & Michalak, 2022).

RESULTS & DISCUSSION

Spectra Visualization

Reflectance data for Robusta coffee from four regions
in Indonesia were collected using a SWNIR spectrometer
operating within the wavelength range of 954-1700nm,
resulting in 126 spectral variables. Fig. 4a shows all original
spectra, while Fig. 4b shows average spectra of four Robusta
coffees for four regions. When analyzing the average
spectra (Fig. 4b), the spectra were very similar over most of
the range, except in some wavelength regions where the
differences were noticeable. While the average spectra of
the Robusta Lampung and Toraja overlap, Temanggung and
Dampit show some differences in reflectance intensity. The
difference between Lampung and Toraja varieties was not
evident because their spectra overlapped, indicating that they
had similar spectrochemical characteristics. Temanggung and
Dampit coffee exhibit higher reflectance compared to
Lampung and Toraja coffee across the wavelength range.
This variation suggests differences in chemical composition
among samples (Pandiselvam et al.,, 2022).

By applying Savitzky-Golay 1st Derivative to the
original spectra several significant reflectance bands were
more observable in the spectra between 900-1700nm.
According to (Barbin et al., 2014), absorption of groups CH,
C = C-H, H20, CH3, CH2, RNH, and ROH related to

carbohydrates, water, lipids, proteins, aromatics,
chlorogenic acid, and caffeine present in those regions.
Notably, there are prominent absorption bands

corresponding to the CH stretching overtones at around
1200nm related to acidity (Ribeiro et al., 2011) and NH
stretch of primary amines at 1400nm (Weyer & Lo, 2006).
Lampung coffee exhibits the lowest reflectance or the
highest absorbance compared to other varieties, particularly
at 1450 nm, which is associated with the presence of
carbohydrates, chlorogenic acids, and lipids in coffee
(Baqueta et al., 2023) and OH stretching of water content
(Barbin et al., 2014). Furthermore, the first overtone of O-H

WO 1100 100 1300 1400 1500 1600 1700
Wavebength (nm}

C

and N-H stretching, which relates to amino acids and
chlorogenic acids, was observed at 1579nm (Chakravartula
et al, 2022) and 1672 nm related to caffeine (Barbin et al.,
2014). The spectral differences can be used to characterize
and discriminate between coffee origins based on their
unique NIR spectral fingerprints, which are directly linked to
the functional groups involved (Giraudo et al, 2019). The
bitterness of Robusta coffee, largely related to the levels of
caffeine and chlorogenic acid (Ban et al, 2025), can be
traced to these spectral features. This spectral information
is valuable for understanding the chemical composition of
Robusta coffee and can be applied in quality control.

To investigate the differences between Robusta coffee
origins, PCA, PLS and LDA analyses were conducted. PCA
was evaluated by plotting the first two principal
components based on spectral characteristics. Fig. 5a
displays a two-dimensional PCA score plot for four Robusta
coffee origins (Temanggung, Toraja, Dampit, and Lampung),
illustrating clear groupings based on their chemical and
compositional  similarities. The first two principal
components, PC1 and PC2, explained 98.28% and 1.15% of
the total variance, respectively, accounting for a total of
99.43% of the variance. Similar results reported by
(Yusmanizar & Munawar, 2021) which use PC1 and PC2 to
classify another variety of Indonesia coffee from Sumatra
region. Fig. 5b shows the PLS score plot (Latent Variable 1
(LV1) vs. LV2). The separation of the coffee origins is evident,
with the PLS components creating distinct boundaries
between the groups, suggesting effective discrimination.
LV1 accounted for 90.23% of the variance, while LV2
contributed 8.38%, resulting in an overall explained variance
of 98.61%. The use of PLS to classify Indonesian coffee is
more distinct that the one used to classify coffee from
various countries such as Columbia, Ethiopia, India,
Indonesia, and Nicaragua (NUfez et al., 2020).

Both PCA and PLS models successfully classify
Indonesia coffee origin. The samples formed two distinct
groups along PC1 and LV1: one group, composed of
Temanggung and Dampit, had positive scores, while the
other, consisting of Toraja and Lampung, had negative
scores. This separation is evident in the two-dimensional
plots, where at PC2 and LV2, the Temanggung and Toraja
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Fig. 5: Plots of PC scores from
original spectra based on (a) PCA,
(b) PLS, and (c) LDA models.
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samples shift to a negative score. At the same time, Dampit
and Lampung move to a positive score. The spatial
distribution of the samples suggests significant chemical
compositional differences between these origins (Yusibani
et al, 2023; Yani & Utomo, 2025), with the spectral
characteristics of each origin contributing to the separation.

LDA demonstrated superior performance compared to
PCA and PLS by providing the maximum separability of the
classes and effectively drawing decision boundaries
between the sample groups. Similar work was conducted by
(Suhandy & Yulia, 2018) to classify Luwak coffee, obtaining
100% accuracy using LDA. LDA works by minimizing within-
class variance and maximizing between-class variance
(Ansari et al., 2025). As shown in Fig. 4c, the LDA score plot
(LD1 vs. LD2) reveals a more clustered grouping of the
coffee origins, with Dampit distinctly positioned away from
the other samples along the positive score of LD1. The
different origins—Temanggung, Toraja, and Lampung—are
placed along the negative score of LD1, with further
separation along LD2. Lampung, for example, is positioned
away from the other samples along with the negative score
of LD2, while Temanggung and Toraja are placed along with
the positive score. The relatively small distance between
Temanggung and Toraja suggests spectral similarities
between these two origins. Overall, LDA provided a clearer
separation and a more coherent interpretation of the data
than PCA and PLS.

In addition to the score plots, PCA and PLS loading
plots were examined to assess the contributions of different
wavelengths to the variance in the data (Rismiwandira et al.,
2020). The loading matrix helps to identify which variables
contribute most to each component. Fig. 6 shows the loading
plots for the first two PCs and LVs. Significant contributions
are marked by values far from the x = 0 axis (either positive
or negative), indicating that certain wavelengths strongly
influence the principal components and, consequently, the
separation between the samples. For PC1 (Fig. 6a), the
significant wavelengths for sample distinction ranged from
940 to 1350nm (positive contribution) and from 1350 to
1700 nm (negative contribution). These contributions
facilitated the separation of the Temanggung and Dampit
samples from the Toraja and Lampung samples. The sample
separation based on PC2 further refined this classification.
Similarly, PLS LV1 (Fig. 6b) displayed high positive
contributions between 940 and 1370nm, with negative
contributions from the remaining wavelengths (1370-1700
nm), helping separate the Temanggung and Dampit
samples from the Toraja and Lampung samples. The
contribution of LV2 was particularly useful for differentiating
the Temanggung and Dampit samples.

LD2 (26.79%)

. " o Temanggung
R
o Campit
P | » Lampung
- 1

H :
0 2
LD1 (51.78%)

C

The PCA and PLS loading plots (Fig. 6) reveal
distinctive peaks and valleys at specific wavelengths,
indicating significant chemical differences between the
coffee origins. At Fig. 6a, PC1 explained 98.28% of the total
variance in the original spectra, with peaks around 1300,
1460 and 1650nm corresponding to chlorogenic acid
(Correia et al,, 2018), carbohydrates, chlorogenic acids, and
lipids (Baqueta et al., 2023), water content (Barbin et al.,
2014), and caffeine (Barbin et al., 2014). PC2 explained
1.15% of the variance, with additional peaks and valleys at
1100 and 1200nm representing the second overtone of the
CH functional group (Correia et al, 2018). These
wavelengths contribute to the spectral differences
observed across the coffee samples.

The LV1 from the PLS model (Fig. 6b) shows a flattened
curve with an S-shape in the loadings, while LV2 exhibited
high peaks at 1400 and 1650 nm. The reflectance at these
wavelengths primarily arises from CH and OH vibrations in
the chemical groups present in the coffee samples,
providing key insights into the chemical composition of the
Robusta coffee samples (Zhang et al., 2025).

The number of data variables in PCA and LDA was
determined by evaluating the sorted eigenvalues. These
eigenvalues are often expressed as percentages of the
explained variance (Table 3). A higher cumulative
percentage indicates a better model, as the eigenvalues
closer to zero or with very low variance may suggest
unimportant variables or potential linear dependencies in
the data. These low-variance components likely do not
contribute meaningfully to the data model, possibly
reflecting extraneous factors influencing the observations
(Brereton, 2009).

Table 3: The proportion of explained variance (%) to determine the number
of reduced features

Number of components (or k

variables)
1 2 3 4
PCA  Explained variance 98.28 1.15 0.26 0.18
Cummulative explained variance  98.28 9943 99.69 99.87
PLS  Explained variance 90.23 8.38 0.85 0.22
Cummulative explained variance  90.23 98.61 99.46 99.68
LDA  Explained variance 51.78 2679 2144 x
Cummulative explained variance  51.78 78.57 100 X

In contrast to PCA, the successive values of k in PLS do
not necessarily decrease with each component calculated.
This is because PLS models both the X (predictor) and Y
(response) data simultaneously, using regression to
establish a relationship between them (Brereton, 2009). To
optimize the number of components (k) for classification
studies, cross-validation is a commonly used method.
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The correct number of PLS components is determined by
selecting the k that results in the maximum accuracy, which
is identified when the accuracy value stabilizes or increases
with the addition of more components.

Integration of Dimensional Reduction and Artificial
Neural Networks (ANN)

This section discusses the effectiveness of combining
dimensional reduction techniques (PCA, PLS, and LDA) with
artificial neural networks (ANN) in authenticating the origins
of Robusta coffee. Fig. 7 illustrates the loss and accuracy
curves during the cross-validation process, with the x-axis
representing the number of epochs and the y-axis showing
accuracy and loss percentages. These curves provide
insights into the loss during training, quantifying the

discrepancy between predicted and actual classes in the
training set (Farhadpour et al., 2024). Accuracy, on the other
hand, assesses the agreement between predicted and actual
class. A lower loss signifies that the curve decreases
significantly and flattens as it approaches 0.00 on the y-axis,
while higher accuracy moves closer to 1.00.

Fig. 7 shows that the loss and accuracy curves for PCA,
PLS, and LDA follow similar trends. However, there are
distinguishing features based on the smoothness of the
curves, the number of epochs required to reach stability,
and the final values of the loss curves. PCA and PLS
exhibited fewer smooth curves compared to LDA. The LDA
dataset yielded superior sample authentication. The
findings contradicted those of Sornam & Vanitha (2018),
which reported better accuracy for PCA-based networks
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compared to LDA-based networks. Furthermore, the loss
curves for the validation dataset were consistently lower
than those for the training dataset, indicating that the
model successfully learned from the training set (Wang et
al., 2022). The validation dataset, therefore, contributed to
generalization. All three curves were categorized as “good
fit," with training and validation losses decreasing and
stabilizing, with a minimal gap between the two final loss
values. Continuing training beyond this point could lead to
overfitting, where the model performs well on training data
but struggles with new data, as indicated by an increasing
gap between the two curves. According to the loss curves in
Fig. 7, no overfitting was observed, as the training and
validation datasets were appropriately split.

A superior model will flatten the loss curve, ideally
achieving a value of 0.00 on the y-axis. Compared to PCA
and PLS, LDA performed excellently when combined with
the ANN model. The loss curve for LDA reached the
threshold value of 0.00, while the PLS and PCA curves did
not closely approach this threshold until the final epochs.
Additionally, the LDA accuracy curve reached a threshold of
1.00 more rapidly, stabilizing after approximately 10 epochs,
demonstrating  superior  classification  performance
compared to PCA and PLS.

The classifier's performance was further evaluated
using several metrics. These metrics help assess how well
the classifier performs in terms of classification success. The
confusion matrix, computed from the split datasets (training
and testing), was used to calculate performance metrics,
including accuracy, error rate, specificity, precision, recall,
and F1-score. The results are shown in Table 4, which
demonstrates that the ANN model effectively distinguished
between Robusta coffee origins. The combination of ANN
with PCA, PLS, and LDA produced different classification
accuracies, with LDA achieving the highest accuracy (100%),
while PCA and PLS reached <98 and <97%, respectively.

The ROC curve and AUC value were used to further
evaluate the model's performance and assess its ability to
differentiate between sample groups. The ROC curve is a
probability curve, and the AUC represents the degree of
separability between classes (Aguilar-Ruiz & Michalak,
2022).

Fig. 8 shows the ROC curves and AUC values for the
combination of ANN with PCA, PLS, and LDA. The
distributions in PCA and PLS showed overlaps, indicating
potential errors in distinguishing between the four coffee

Int J Agri Biosci, 2025, 14(6): 1291-1301.

origins. For example, the AUC for Temanggung was 0.99 in
PCA and 0.98 in PLS, indicating that the model could
distinguish between Temanggung and the other samples
with 99% and 98% accuracy, respectively. In contrast, LDA
showed no overlap between the curves, demonstrating a
perfect separability of the four coffee samples, indicating
that the ANN model, in combination with LDA, achieved
the most accurate distinction between the positive and
negative classes.

Table 4: Results of the confusion matrix and evaluation metrics from
testing data
Confusion matrix TP TN FP FN Average (%)
Te To Da Lla AC SP PR RE FS ER
PCA Te 189 6 5 0 189 572 20 11 97.9 98.6 959 959 1.0 2.1
To 6 1670 0 1676127 6
Ma9 0 2041 2045735 10
la 5 1 0 199 199 586 1 6
PLS Te 1728 8 0 172 576 28 16 96.2 97.5 92.5 924 0.9 3.8
To 14 181 0 9 181 577 11 23
Ma 12 0 192 0 192 576 12 12
la 2 3 4 187 187 5879 9
LDA Te 2000 0 0 2005920 0
To 0 1920 0 1926000 O
Ma0O 0 2040 204580 0
la 0 0 0O 196 196 596 0 O

100 100 100 100 0.1 0.0

TP = true positive, TN = true negative, FP = FN = Te = Temanggung, To =
Toraja, Da = Dampit, La = Lampung; AC = accuracy, SP = specificity, PR =
precision, RE = recall, FS = F1-score, and ER = error rate.

Conclusion

This research demonstrates the effectiveness of
combining Shortwave Near-Infrared (SWNIR) spectroscopy
with various dimensional reduction techniques (PCA, PLS,
and LDA) and an Artificial Neural Network (ANN) classifier
to authenticate the origins of Indonesia Robusta coffee. The
results revealed that the combination of LDA and ANN
achieved the highest classification accuracy (100%),
highlighting its superior class separability and prediction
reliability.

Future studies should include a broader and more
diverse set of coffee samples, incorporating additional
origins and varieties to improve the generalizability and
robustness of the proposed model. Expanding the spectral
range and exploring advanced machine learning
techniques, such as Convolutional Neural Networks (CNN),
may also vyield higher accuracy and further refine
classification performance. Furthermore, this approach
holds promise for adaptation to other agricultural products,
offering potential applications in food traceability and
quality assurance across various sectors.
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