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ABSTRACT

The effectiveness of micronutrients, complex fertilizers with chelated trace elements, and
biofertilizers in oil flax cultivation under rainfed conditions in southeastern Kazakhstan remains
underexplored. This study aimed to evaluate the impact of foliar fertilization using tank mixes
of macro- and micronutrients, complex fertilizers (brands: 13-40-13, 12-12-36, 3-11-38), and
the biofertilizer Terra Sorb Complex on the productivity and seed quality of oil flax. Field
experiments were conducted on light chestnut soils in the Almaty region during favorable
weather conditions with adequate soil moisture and moderate temperatures. Results showed
that treatments involving four foliar applications of a tank mix containing MACRO+MICRO
elements and NPK fertilizers with chelated elements significantly increased seed count per
capsule by 2.1seeds compared to the control. The highest 1000-seed weight (7.2g) was
achieved with three or four foliar applications of macro- and micronutrient tank mixes or
complex fertilizers with chelated elements, combined with pre-sowing biofertilizer treatment.
The maximum seed vyield (0.89t/ha) was observed with four foliar applications of
MACRO+MICRO elements or NPK fertilizers with chelated elements, representing a 19.2%
increase over the control. Additionally, fat content in seeds reached 42.0%, and protein
content peaked at 28.4% with foliar treatments. These findings highlight the potential of foliar
fertilization to enhance oil flax productivity and seed quality under rainfed conditions.

Keywords: Oil flax, Micronutrient, Crop foliar fertilization, Seed yield, Seed quality.

INTRODUCTION

The cultivation of flax has expanded in response to the
rising demand for flax-based products. Modern flax
cultivars contain up to 50% oil in their seeds, although the
biological maximum of 60% has yet to be reached.
Globally, oil flax is cultivated on approximately 2.5 to 3.2
million hectares, producing an estimated 1.9 to 2.7 million
tons of seeds (Amangaliev et al, 2023). In modern
agriculture, achieving high and sustainable yields of crops
requires more than just the application of mineral
fertilizers (Zafar et al., 2025). It also necessitates the use of
micronutrients, complex fertilizers containing chelated
forms of microelements, biofertilizers, and other
supplements. One of the most effective and simple
methods of applying micronutrients is pre-sowing seed
treatment.  This  method provides plants  with

Cite this Article as: Malimbayeva A, Amangaliyev B, Zhusupbekov E, Oshakbayeva Z, Soltanayeva A,
Sagimbayeva A, Rustemova K and Batyrbek M, 2025. Foliar fertilization enhances oil flax yield and quality
in semi-arid rainfed zones. International Journal of Agriculture and Biosciences 14(6): 1261-1270.

https://doi.org/10.47278/journal.ijab/2025.14 |

microelements at the very beginning of their growth,
stimulating physiological and biochemical processes in
germinating seeds. For this purpose, salts of
microelements are commonly used (Bobrenko et al., 2020;
Gopalsamy et al., 2025).

Modern micronutrients are highly soluble in water,
have prolonged effects, and can be used in combination
with plant protection agents. By supplying plants with
essential nutrients and boosting their immunity, these
products are environmentally friendly and easy to use
(Bora, 2022; Trukhachev et al., 2023; Zuma et al., 2023).
Currently, microelements in agriculture are primarily
applied in the form of chelates. Chelated compounds
facilitate the absorption of microelements by plants, as
their structure and properties are similar to those
naturally occurring in living organisms. The organic shell
of the chelate can penetrate the waxy coating of a leaf and
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deliver nutrients directly to the plant, unlike inorganic
elements, which cannot as easily bypass the protective
barrier (Madhupriyaa et al, 2024; Feizi et al, 2025).
Research by scientists and practical agricultural experience
have shown that water-soluble complex fertilizers and
biological fertilizers positively influence crop vyields
(Lamlom et al, 2023). Creating optimal nutritional
conditions for plants throughout the growing season
requires the proper combination of base fertilizers and
supplementary feedings (Saquee et al, 2023). The
foundation of complex fertilizers (NPK) consists of simple
water-soluble salts in various combinations to meet the
needs of plants during different stages of growth and
development. The action of foliar fertilizers in non-root
feedings is based on the rapid incorporation of essential
nutrients into metabolism, influencing major metabolic
processes independently of the root system. The
significant yield increase is associated with improved root
absorption of nutrients by 10-15% (Liu, et al, 2020;
Ganguly et al., 2021; Zharkikh et al., 2025).

Tank mixtures of water-soluble simple and complex
fertilizers are prepared considering the crop's nutrient
requirements at specific stages of organogenesis. The set
of nutrients is adjusted based on the biological needs of
the crop during critical periods of growth and
development. These mixtures can be used alongside
pesticides, reducing their stress-inducing effects on plants
without compromising their efficacy. By mixing various
types and forms of fertilizers in tank solutions, it is possible
to influence the content of proteins, sugars, and fats in the
reproductive organs of plants (Dhaliwal et al.,, 2023; Khan
et al., 2024). Biofertilizers or organic bioproducts (based on
seaweed, vermicompost, etc.) are specialized anti-stress
fertilizers with high concentrations of various amino acids.
Their application helps plants overcome stressful
situations, stimulates metabolism and nutrient absorption,
and significantly improves yield and quality of agricultural
products even under unfavorable environmental
conditions (Karthik and Jayasri, 2023).

According to Dolgopolova et al. (2022), foliar feeding
does not replace the main fertilizer application but can
serve as the only viable additional source of mineral
nutrients in some cases. Leaves quickly absorb nitrogen,
phosphorus, potassium, magnesium, and microelements,
which are either directly incorporated into the synthesis of
organic substances or transported to other plant organs
for intracellular metabolism. This process positively
influences key physiological activities. Foliar feeding has
been widely adopted in the production practices of various
crops across diverse climatic regions in Europe, Australia,
United States of America, Canada, China, and Russia. The
effectiveness of foliar feeding, depending on its precision
during the critical phase of field crops, can increase yields
by 11-18% or more (Lafond et al., 2003; Cui et al.,, 2022;
Amangaliev et al,, 2023; Stavropoulos et al., 2023).

In the agricultural practices of Kazakhstan, traditional
simple and complex fertilizers such as superphosphate,
Monoammonium phosphate (MAP), ammonium nitrate,
urea, and potassium chloride are commonly used for oil
flax. These fertilizers contain nutrients in salt form, are
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poorly soluble, and often precipitate, resulting in plant
absorption rates of only 30-35%.

A promising direction in intensive farming for crop
cultivation is the introduction of innovative fertilizers, such
as complex fertilizers with chelated forms of microelements,
the preparation of balanced nutrient tank mixtures with
water-soluble fertilizers, and organic biofertilizers. The
objective of this study is to evaluate the effectiveness of
traditional and innovative fertilizer applications, including
seed treatment and foliar feeding, on the growth, yield,
and quality indicators of oil flax under rainfed conditions in
the semi-arid southeastern region of Kazakhstan.

MATERIALS & METHODS

The experimental research was conducted in 2024 on
an experimental field of the Soil Science and
Agrochemistry Laboratory of the Kazakh Research Institute
of Agriculture and Plant Growing (43°13'N, 76°41'E, 740m
asl) (Fig. 1), focusing on oil flax crops.
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Fig. 1: Map of research area.

The soil of the rainfed plot is represented by light
chestnut soil with a medium loamy composition and a
moderately thick humus horizon (0-46cm), formed from
loess-like loams and clays. The soil in the experimental plot
contains a low amount of total humus in the arable layer,
ranging from 1.60% to 1.90%. The total nitrogen content is
0.15%, total phosphorus is 0.21%, and total potassium is
1.67%. The reaction of the soil in the arable horizon is
slightly to moderately alkaline, with pH values ranging
from 7.8 to 8.2. The experiment was structured spatially
and temporally with three replicates, 13 treatments: I-
Control (without fertilizers), 11-N60P60K60, [II-N60P60K60
(background) + Seed Treatment-, |V-Background + 3
Foliar Treatments with Tank Mixture of Macro +
Micronutrients, V-Background + 4 Foliar Treatments with
Tank Mixture of Macro + Micronutrients, VI-Background +
3 Foliar Treatments with Biofertilizer, VII-Background + 4
Foliar Treatments with Biofertilizer, VIII-Background + 3
Foliar Treatments with NPK and Micronutrients (brands:
13-40-13; 12-12-36), IX ~ -Background + 4  Foliar
Treatments with NPK and Micronutrients (brands: 13-40-
13; 12-12-36; 3-11-38), X-Background + 3 Foliar
Treatments with Macro + Micronutrients + Biofertilizer, XI-
Background + 4 Foliar Treatments with Macro +
Micronutrients + Biofertilizer, Xll-Background + 3 Foliar
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Treatments with NPK and Micronutrients + Biofertilizer,
XllI-Background + 4 Foliar Treatments with NPK and
Micronutrients + Biofertilizer. The arrangement of the plots
was systematic, and treatments within replicates were
randomized. The area of each experimental plot was 25m?.
The predecessor crop for oil flax was spring barley. Sowing
was carried out at optimal dates (April 1-5) using an
Agromaster seeder at a seeding rate of 40 kg.ha™'. The
seed sowing depth was 2-3cm. The experiment included
various types, forms, methods, and timings of fertilizer
application:

Mineral fertilizers: Urea (N-46%), Monoammonium
phosphate (MAP) (N-12%, P-52%), and potassium sulfate
(K-50%) were applied in spring before sowing during
cultivation. Monoammonium phosphate (N-12%, P-52%)
and potassium sulfate (K-50%) were also applied in autumn
during primary soil preparation (plowing to a depth of 20—
22cm) at a rate of 60kg of active substance per hectare.
Biofertilizer: Terra Sorb Complex was used, containing free
amino acids 20.0%, organic nitrogen 5%, total nitrogen
5.5%, boron 1.5%, manganese 0.1%, copper 0.25%, zinc
0.1%, iron 1%, magnesium 0.8%, molybdenum 0.001%, total
organic matter 25%. The biofertilizer was applied during
pre-sowing seed treatment at a rate of 4.5Lt™ and as foliar
feeding at a dose of 2Lha™" at the following growth phases:
5-6 leaf stage early "fir tree" phase, 8-9 leaf stage "Fir tree"
phase, budding phase, flowering phase.

A tank mixture consisting of the following macro and
micronutrients was used for foliar feeding during various
growth stages: Urea (N - 46.2%), 5kgha’. Magnesium
sulfate (Mg - 16%, SOs - 32%), 1 kg ha™'. Monopotassium
phosphate (P,Os - 52%, KO - 34%) or Potassium sulfate
(K20 - 51%, SO, - 45%), 1kgha™'. Bortrac 150 (B - 11%, N -
4.7% + adjuvants) and Zintrac 700 (Zn - 40%, N - 1% +
adjuvants), 0.1kgha™". This mixture was applied during the
following growth phases: 5-6 leaf stage early “fir tree"
phase, 8-9 leaf stage "Fir tree" phase, budding phase,
flowering phase.

Chelated complex fertilizers (brands: 13-40-13, 12-12-
36, 3-11-38) were applied via foliar feeding at a rate of
2kgha™' during the specified growth stages. To control
weed infestations in oil flax crops, herbicide application
was conducted during the "fir tree" phase using a tank
mixture of Samurai Super (0.54kgha’’) and Herbitox
(0.54Lha™"). The yield of oil flax was determined according
to Arslanoglu et al. (2022). Quality parameters of plant
samples were analyzed in the laboratory for technological
grain evaluation. Protein content was measured using the
Kjeldahl method and infrared spectroscopy (FOSS), while
fat content was determined using infrared spectroscopy.
Statistical analysis was conducted to assess the reliability
of the obtained results. The experimental results were
analyzed by SPSS software generally accepted method
comparing variations between different treatments (Gerber
and Green, 2012). The analysis of essential nutrients
nitrogen determined by Keldal method (Goyal et al.,, 2022),
while phosphorus and potassium were determined by
Michigan method in modification of the Central Research
Institute of Agrochemical Services for Agriculture State
Standard  26205-91. Exchangeable potassium was
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calculated on a flame photometer following State Standard
26205-91 (Batyrbek et al., 2022).

This year, favorable meteorological conditions were
observed for the growth of oil flax (Fig. 2). In April, a
significant amount of precipitation, 111.3mm, or 100.6% of
the long-term average, was recorded, accompanied by an
average monthly air temperature of 12.8°C. These
conditions positively influenced the uniform emergence of
seedlings and the subsequent growth and development of
oil flax plants during the post-emergence period. May was
warm, with an average air temperature of 17.6°C, and
frequent rains of varying intensity. Total precipitation for
the month was 121Tmm, exceeding the long-term average
by 123.1%.

Fig. 2: Oil flax research field.

In June, there was a noticeable increase in air
temperature 3.3°C above the long-term average. However,
precipitation during this month was minimal, at only
18.0mm. Despite the low rainfall, sufficient soil moisture
remained in the one-meter soil layer due to the May rains.

In early July, most of the precipitation occurred,
totaling 57.0mm, which was consistent with the long-term
average. During the second ten-day period of July,
precipitation decreased to 27.4mm, and the air
temperature rose to 24.0°C. These conditions facilitated
the full ripening of oil flax plants by the beginning of the
third ten-day period in July (Fig. 3).
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Fig. 3: Weather Conditions during the Vegetation Period of QOil Flax.
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RESULTS

Humus Contents in Soil

The results demonstrated significant variations in
labile humus, total humus content, and soil humus levels
across different growth stages under various fertilization
treatments (Fig. 4). Labile humus content ranged from
1.52mgkg™ to 1.86mgkg™ across treatments. The highest
value was recorded in treatment XlI (1.8620.09mgkg™),

while the lowest was observed in the control
(1.524£0.06mgkg™).  Other treatments with  foliar
fertilization, particularly X (1.7120.1mgkg™) and Xl

(1.68+0.08mgkg™), also demonstrated higher labile humus
levels compared to the control. Total humus content varied
significantly, with the highest values recorded in
treatments | and IV (1730mgkg™"), while the lowest were
observed in treatments V and VII (1330mgkg™). At the
shoot formation stage, treatment IV (1560+95mgkg™)
exhibited the highest humus content, whereas treatment
VIl (1255£105mgkg™) had the lowest. A similar trend was
observed at the budding stage, where treatment IV
(1480+151mgkg™) and XlII (1480+105mgkg™") maintained
significantly higher humus content than the control
(1250+105mgkg™). Before harvest, total humus content
remained highest in treatments IV and Xl
(1480+151mgkg™ - 1480+105mgkg mg kg'"), whereas
treatments V, VII, and VIII exhibited the lowest values
(112072 - 1130+ 115mgkgkg").
Nitrate  Nitrogen, @ Mobile and
Exchangeable Potassium Changes

The study revealed significant variations in nitrate
nitrogen, mobile  phosphorus, and exchangeable
potassium levels in the soil across different treatments and
growth stages (Fig. 5).

For nitrate nitrogen, the highest concentrations were
observed at the shoots stage, with values ranging from
23+3mgkg™ in the control (I) to 42+6mgkg™" in treatment
VI. As plant growth progressed, nitrate nitrogen levels
declined across all treatments, reaching their lowest levels
before harvesting (11+t2mgkg™? in the control and
24+6mgkg™ in treatment VI). Treatments with foliar
fertilization, particularly those including macro and
micronutrients, demonstrated significantly higher nitrate
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phosphorus content also exhibited treatment-dependent
variations. At the shoots stage, concentrations ranged from
23+4mgkg™ in the control to 40+6mgkg™ in treatment VII.
By the budding stage, phosphorus levels increased in most
treatments, with the highest values recorded in treatments
IX (36x6mgkg™) and VIII (35:t4mgkg™"). However, at the
harvesting stage, phosphorus levels declined, with the
lowest in the control (17+3mgkg™) and the highest in
treatment IX (32+5mgkg™). Treatments with repeated
foliar fertilization demonstrated better phosphorus
retention in the soil. Regarding exchangeable potassium,
the control treatment consistently showed the lowest
values throughout the growth stages. At the shoots stage,
potassium ranged from 271+10mgkg™" (control) to 340+13
mg kg™ (treatment VI). At the budding stage, potassium
content remained highest in treatments VIII (298+12mgkg"
") and IX (301£9mgkg™), while the control recorded the
lowest value (243+12mgkg™). By the harvesting stage,
potassium levels declined in all treatments, with the lowest
in the control (212+11mgkg™) and the highest in
treatment VIII (280+6mgkg™).

Effect of Foliar Fertilization on Plant Density, the
Number of Capsules per Plant, the Number of Seeds
per Capsule and 1000 Seed Weight

Favorable soil moisture conditions during the
vegetation period of oil flax, combined with the application
of tank mixtures of macro and micronutrients, complex
fertilizers with chelated micronutrient forms, the biological
fertilizer Terra Sorb Complex, and mineral fertilizers,
positively influenced the formation of the main indicators
of yield structure elements.

The experiment revealed significant variations in plant
density, the number of capsules per plant, the number of
seeds per capsule, and 1000 seed weight among different
fertilization treatments. Plant density was lowest in the
control treatment (244+8.5plants/m?), while the highest
values were observed in treatments V (296+8.2plants/m?)
and IX (296+5.0plants/m?), both of which included foliar
fertilization. In general, treatments that incorporated foliar
applications of macro- and micronutrients demonstrated
increased plant density compared to the control. A similar
trend was observed for the number of capsules per plant,
where the control had the lowest value (9.1+0.7), and the
highest number was recorded in treatment V (17.9+0.7).

Fig. 4: Total and labile

Labile humus, mg kg! humus changes.
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Table 1: Influence of foliar application on plant growth and yield components

Int J Agri Biosci, 2025, 14(6): 1261-1270.

Treatments Plant Density (plants/m?) Capsules/plant Seeds/capsule 1000 Seed Weight (g)
| 244+8.5b 9.1+£0.7g 5.1+0.8b 6.0+0.7a
I 250+4.6b 10.2+0.5g 5.5+0.8ab 7.0t1.1a
I 252+8.2b 10.6+0.99 5.6+1.0ab 7.0£0.8a
v 292+7.5a 16.8+1.4ab 7.0+1.0a 7.2+1.1a
\Y 296+8.2a 17.9+0.7a 7.2+0.7a 7.2+1.0a
Vi 254+7.2b 12.5+0.7f 5.7+0.9ab 7.0£0.9a
Vil 257+4.6b 13.3+1.0ef 5.8+1.0ab 7.0£0.5a
Vil 292+10.5a 16.1+1.0bc 6.9+0.8a 7.2+1.0a
IX 296+5.0a 17.2+1.3ab 7.2+0.8a 7.2+0.9a
X 284+8.2a 14.4+0.8de 5.9+0.9ab 7.1£0.8a
Xl 285+6.6a 14.9+0.3cd 6.0+0.8ab 7.1+0.7a
Xl 287+8.5a 15.0+0.8cd 6.5+1.1ab 7.0+1.0a
Xl 289+5.6a 15.7+1.0bcd 6.2+0.9ab 7.0+0.8a
Values (mean=SD) bearing different letters in a column indicate significant (P<0.05) difference.
Nitrogen Phosphorus Polassium
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Fig. 5: Nitrate nitrogen, mobile phosphorus, and exchangeable potassium changes during the vegetation period of oilseed flax.

Treatments incorporating multiple foliar applications,
particularly VIII (16.1£1.0) and IX (17.2+1.3), significantly
outperformed the control, highlighting the benéeficial
effects of foliar fertilization on reproductive development.
The number of seeds per capsule followed a comparable
pattern, with the lowest value in the control (5.1+0.8) and
the highest values in treatments V and IX (7.2£0.7 -
7.2+0.8). Notably, treatments with four foliar applications
tended to produce more seeds per capsule compared to
those with only three applications, emphasizing the
importance of repeated foliar nutrition. Regarding seed
quality, the 1000 seed weight exhibited slight variations
across treatments. The lowest weight was recorded in the
control (6.0+0.7g), while the highest values were found in
treatments IV-V and VIII-IX. Although differences were not
always statistically significant, the results suggest that foliar
fertilization, particularly with macro- and micronutrients,
contributes to improved seed weight. Overall, the findings
indicate that foliar fertilization enhances key yield
components of oil flax, with treatments V and IX showing
the most pronounced improvements. Additionally,
biofertilizer-based treatments (X-XIll) also demonstrated
positive effects, suggesting their potential role in
improving yield and quality under semi-arid rainfed
conditions. (Table 1).

Effect of Foliar Fertilization on Quality and Quantity of
Oilseed Flax

The application of foliar fertilization significantly
influenced oil flax yield, fat content, and protein levels. The
lowest yield was recorded in the control treatment

(0.72+0.01tha™), while the highest yield was observed in
treatments V, IX, X, and Xlll (0.89tha™), demonstrating a
19.2% increase compared to the control. In general,
treatments incorporating foliar fertilization showed
substantial yield improvements, with higher increases in
treatments that included macro- and micronutrients,
biofertilizers, and multiple foliar applications. The fat
content varied among treatments, ranging from
39.8+1.01% (control) to 42.0+0.70% (treatment IX).
Treatment IX, which included four foliar applications of
NPK and micronutrients, exhibited the highest fat
percentage, significantly exceeding the control. Other
treatments with multiple foliar applications (V, VIII, X, and
Xl) also demonstrated increased fat content (41.1-41.5%),
confirming the beneficial effects of foliar nutrition on oil
accumulation in flax seeds.

The protein content showed minor fluctuations across
treatments, with values ranging from 27.0+1.08% (control)
to 28.4+0.85% (treatment V). However, statistical analysis
indicated that differences between treatments were not
always significant (P>0.05), suggesting that while foliar
fertilization can enhance protein levels, other factors such
as soil conditions and genetic variability may also play a
role. The results highlight that foliar fertilization improves
both yield and oil quality of oil flax, particularly when
applied in multiple treatments with a combination of
macro- and micronutrients. Treatments V and IX exhibited
the most pronounced improvements, making them the
most effective foliar fertilization strategies under semi-arid
rainfed conditions. (Table 2).
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Table 2: Impact of foliar application on yield and seed quality parameters

Treatments Yield (tha™) Compare to Oil (%) Protein (%)
control (tkg™")
| 0.72+0.01e - 39.8+1.01¢ 27.0+1.08a
I 0.75+0.02de 4.0 40.1£0.95bc  27.3+0.75a
1 0.78+0.01d 77 40.2+0.75bc  27.4+0.82a
\% 0.83+0.02bc 133 41.0£0.60abc  28.3+0.82a
Vv 0.89+0.01a 19.2 41.1£0.82abc  28.4+0.85a
Vi 0.81+0.01c 11.2 40.7£0.92abc  27.5+1.25a
i 0.83+0.00bc 133 40.8+1.11abc  27.5+0.92a
Vil 0.86+0.02ab 16.3 41.5£0.95ab  27.7+0.95a
IX 0.89+0.02a 19.2 42.0+0.70a 27.9+0.75a
X 0.89+0.02a 19.2 41.2+0.75abc  28.1+0.40a
Xl 0.86+0.02ab 16.3 41.31£0.53abc  28.2+0.62a
Xl 0.86+0.01ab 16.3 40.9+0.36abc  27.6+0.92a
Xl 0.89+0.02a 19.2 41.0+0.46abc  27.7+0.82a

Values (mean£SD) bearing different letters in a column indicate significant
(P<0.05) difference.

DISCUSSION

Foliar Application on Soil Health

The observed variations in both labile and total humus
contents across different fertilization  treatments
underscore the critical influence of nutrient management
strategies on soil organic matter dynamics. Labile humus, a
sensitive indicator of soil biological activity and nutrient
availability, showed marked improvement under foliar
fertilization  treatments,  particularly  treatment  XI
(1.86+0.09mgkg™), which significantly outperformed the
control  (1.52+0.06mgkg™). This finding aligns with
previous studies highlighting that foliar application of
micronutrients can stimulate root exudation and microbial
activity, thereby enhancing the formation of labile organic
compounds (Bana et al., 2022). Similarly, the total humus
content exhibited distinct differences, with the highest
values recorded in treatments | and IV (1730mgkg™),
indicating the cumulative benefit of both basal and foliar
fertilization regimes on long-term organic matter
stabilization. Treatment [V consistently maintained
elevated humus levels across all growth stages,
suggesting its superior efficacy in promoting organic
matter accumulation. This may be attributed to the
synergistic effects of applied nutrients enhancing plant
biomass return and microbial decomposition processes
(Lal, 2015; Han et al., 2016).

Notably, the reduction in humus content in treatments
V, VI, and VII (ranging from 1120+72 to
1130+115mgkg™) suggests a potential imbalance or
insufficiency in nutrient supply, which may have
constrained microbial activity and organic matter turnover.
These observations support earlier reports that suboptimal
fertilization not only limits crop productivity but also
depletes soil carbon pools over time (Srinivasarao et al,
2019). Recent studies further emphasize the role of foliar
fertilization in enhancing soil biological properties. For
instance, Tastanbekova et al. (2024) demonstrated that
integrating foliar fertilization with compost and soil
fertilizers significantly improved soil microbial biomass and
enzymatic activities, leading to enhanced soil health and
productivity under greenhouse conditions. Such findings
corroborate the positive impact of foliar applications on
soil biological dynamics.
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Overall, these results demonstrate that targeted
fertilization especially combinations involving foliar
application can effectively enhance both labile and total
humus content in soil, thereby contributing to improved
soil health and sustainability in semi-arid agroecosystems.

Foliar Application and Soil Macronutrient Dynamics

The study revealed notable temporal and treatment-
dependent fluctuations in soil nutrient availability,
particularly for nitrate nitrogen (NO;3;-N), mobile
phosphorus (P), and exchangeable potassium (K*). These
dynamics are indicative of the strong influence of foliar
fertilization strategies on nutrient cycling and retention
during crop growth stages.

Nitrate nitrogen levels peaked during the shoot
formation stage, consistent with the early vegetative
demand for nitrogen. The highest concentrations were
found in treatment VI (42+6mgkg™), significantly
surpassing the control (23+3mgkg™), suggesting
enhanced nitrogen mineralization or reduced leaching
under foliar nutrient supplementation. As plant
development advanced, nitrate levels declined across all
treatments, reaching their lowest before harvest. This trend
is well-documented, as nitrogen is highly mobile in soil
and rapidly taken up during active plant growth phases (Li
et al, 2024; Zhang et al, 2024). Treatments combining
macro and micronutrients via foliar application appeared
to prolong nitrate availability, likely due to improved
nutrient use efficiency and reduced volatilization losses
(Alotaibi et al., 2023).

Mobile phosphorus content showed a similar pattern,
with increased concentrations during early growth stages
and a general decline towards harvest. Treatments with
foliar fertilization, particularly VIII and IX, demonstrated
higher P levels throughout the season compared to the
control. This may be due to the role of foliar P in reducing
phosphorus fixation in the soil and enhancing root
exudation, which mobilizes sparingly soluble P forms
(Rafiullah et al, 2021). The sustained phosphorus
availability in these treatments suggests improved internal
nutrient cycling and possibly higher mycorrhizal activity
promoted by foliar feeding (Etesami et al.,, 2021).

Exchangeable potassium, crucial for water regulation
and stress tolerance, consistently exhibited the lowest
values in the control treatment. In contrast, foliar-fed
treatments, especially VI, VI, and IX, maintained
significantly higher K levels. The increase in K availability
may be attributed to the synergy between soil and foliar K
inputs, which can stimulate microbial mineralization and
improve soil K buffering capacity (Ishfaq et al., 2023).
Despite a general decline toward the harvesting stage,
treatments with repeated foliar applications showed slower
depletion rates, suggesting better nutrient retention and
possibly reduced plant uptake saturation or leaching loss
(He et al, 2022). Collectively, these findings highlight the
effectiveness of foliar fertilization in enhancing and
maintaining essential macronutrient levels in soil, which is
crucial for sustaining crop productivity and soil fertility in
rainfed systems.
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Influence of Foliar Fertilization on Yield Components of
Oil Flax

The present study demonstrated that foliar
fertilization significantly improved key vyield structure
components of oil flax, including plant density, the number
of capsules per plant, the number of seeds per capsule,
and 1000 seed weight. These findings are consistent with
previous research highlighting the benefits of foliar
nutrient application in enhancing growth and productivity
under semi-arid and nutrient-limited conditions (Niu et al,,
2021; Xu et al.,, 2023).

The increased plant density in treatments V and IX
(296plants/m?), compared to the control (244plants/m?),
suggests that foliar fertilization supports better seedling
establishment and survival. Enhanced nutrient availability
through foliar feeding, particularly when macro- and
micronutrients are combined, may have supported early
growth and plant vigor (Babu et al., 2022). The positive
response in density aligns with the view that balanced
nutrient supply during early growth stages can increase
stand uniformity and resilience in  stress-prone
environments (Dass et al., 2022). Capsule formation, a
critical yield-determining factor, was also strongly
influenced by foliar nutrition. Treatments V, VIII, and IX,
which involved multiple foliar applications, significantly
increased the number of capsules per plant (up to 17.9 vs.
9.1 in the control). This aligns with findings by Merifio-
Gergichevich et al. (2021), who reported that foliar-applied
micronutrients, such as zinc and boron, stimulate flowering
and fruit setting processes by enhancing enzymatic activity
and hormonal balance.

Similarly, the number of seeds per capsule increased
notably with foliar treatments, particularly in treatments V
and IX, each recording 7.2 seeds per capsule compared to
5.1 in the control. The beneficial effect of repeated foliar
fertilization could be attributed to improved nutrient
assimilation during the reproductive phase, which
enhances seed formation and filling (Mitra et al., 2023).
Although the 1,000 seed weight showed modest
differences among treatments, higher weights observed in
treatments 1V, V, VIII, and IX suggest that foliar feeding
may also positively influence seed development. Previous
studies have shown that nutrient supplementation,
especially involving  chelated  micronutrients  and
biostimulants, can enhance assimilate translocation to
seeds, resulting in higher weight and improved seed
quality (El Sayed et al., 2024).

Biofertilizer treatments (X-XIlII), which included Terra
Sorb Complex, also contributed positively to plant
density and yield components, although not always to
the same extent as mineral-based foliar treatments. The
role of biofertilizers in improving nutrient uptake
efficiency and stimulating plant metabolism under water-
limited conditions has been increasingly recognized
(Rouphael and Colla, 2020; Liao et al., 2025). Overall, the
findings of this study confirm that foliar fertilization,
particularly when applied in multiple stages and in
combination with macro- and micronutrients, enhances
the structural yield components of oil flax. Treatments V
and IX were identified as the most effective, underlining
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their potential for optimizing flax productivity in semi-
arid, rainfed environments.

Foliar Nutrient Management Strategies to Boost Oil
Flax Performance in Rainfed Environment

The findings of this study demonstrate that foliar
fertilization significantly enhances both the yield and
quality parameters of oil flax grown under semi-arid
rainfed conditions. The notable increase in seed yield,
particularly in treatments V, IX, X, and XIIl (up to 19.2%
higher than the control), aligns with previous research
showing that foliar application of nutrients can
compensate for soil nutrient limitations, especially in
water-limited environments (Fernadndez and Ebert, 2005;
Ishfag et al., 2022). The enhanced productivity in these
treatments can be attributed to the synergistic effect of
macro- and micronutrients, which are essential for
metabolic  processes, photosynthesis,  and seed
development (Pahalvi et al., 2021).

The improvement in oil content, with treatment IX
exhibiting the highest fat percentage (42.0%), reinforces
the role of balanced nutrient application in promoting
lipid biosynthesis in oilseed crops. Foliar application of
NPK along with micronutrients such as zinc and boron
likely stimulated enzymatic activities involved in fatty acid
synthesis (Dhaliwal et al., 2022). This finding is consistent
with Premalatha et al. (2023), who reported increased oil
content in oilseed crops following repeated foliar
fertilization with both macro- and micronutrients.
Treatments V, VIII, X, and XI, which also received multiple
nutrient sprays, showed similarly elevated fat levels,
further supporting the importance of repeated
applications in maximizing nutrient uptake and utilization
(Rahman et al.,, 2020).

Although the protein content varied slightly across
treatments, with the highest value recorded in treatment V
(28.4%), the differences were not statistically significant (p
>0.05). This suggests that while foliar fertilization may have
a modest impact on protein synthesis, other factors such
as genotype, environmental stress, and soil nutrient
reserves may exert a greater influence (Crista et al., 2023).
Nevertheless, the trend toward higher protein content in
treated plots supports findings from Cordeiro et al. (2022),
who indicated that biofertilizers and foliar nutrients can
enhance nitrogen metabolism and amino acid formation.
Recent research further supports these findings. For
instance, Rahman et al. (2023) demonstrated that foliar
application of phosphorus and zinc significantly increased
oil content and yield in flax, highlighting the importance of
these nutrients in oilseed crop production. Similarly, a
study by Tastanbekova et al. (2024) found that integrating
foliar fertilization with compost and soil fertilizers. Overall,
the study confirms that foliar fertilization particularly when
applied in multiple treatments combining macro- and
micronutrients can be an effective agronomic strategy to
enhance both yield and oil quality of oil flax in dryland
agriculture. Treatments V and IX emerged as the most
effective approaches, corroborating the benefits of
integrated nutrient management through foliar feeding, as
emphasized in earlier studies (Ashenafi et al., 2025).
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Conclusions

Experimental results demonstrated that foliar
fertilization with various formulations and application
methods significantly improved key agronomic traits, yield,
and seed quality of oilseed flax. The highest plant stand
density (296plants/m® was achieved in treatments
involving four foliar applications of a tank mix of macro-
and micronutrients or NPK with micronutrients (brands:
13-40-13; 12-12-36; 3-11-38). These values were
52plants/m? higher than the control. In contrast, the lowest
plant survival (250plants/m?) was recorded in plots where
only mineral fertilizers (N60P60K60) were applied,
indicating the limitations of mineral fertilization alone.
Among foliar treatments, the highest number of pods per
plant (17.9) was observed in the treatment involving four
foliar applications of macro- and micronutrients, combined
with mineral fertilization and pre-sowing seed treatment
with the biofertilizer Terra Sorb Complex. This treatment
resulted in an increase of 8.8 pods per plant compared to
the control. Conversely, the lowest number of pods was
recorded in the mineral fertilizer-only treatment and the
unfertilized control, with increases of just 1.1 and 1.5 pods
per plant, respectively. The greatest number of seeds per
pod (7.2) was recorded in treatments that received four
foliar applications of macro- and micronutrients or NPK
with micronutrients, in combination with mineral fertilizers
and pre-sowing biofertilizer treatment. This represented a
significant improvement over the control (5.1 seeds per
pod). Other fertilization strategies resulted in seed counts
of 5.5 to 7.0 per pod, exceeding the control by 0.4 to 1.9
seeds. Foliar fertilization, combined with mineral fertilizers
and biofertilizer seed treatment, resulted in a 1000-seed
weight of 7.0-7.2g, surpassing the control by 1.0-1.2g.
These findings highlight the positive impact of foliar
feeding on seed development. The highest seed yield
(0.89tha") was obtained from treatments involving: Four
foliar applications of a tank mix of macro- and
micronutrients, four foliar applications of chelated
micronutrient-containing fertilizers (brands: 40-13-40; 12-
12-36; 3-11-38), three foliar applications of macro- and
micronutrients combined with biofertilizers, four foliar
applications of a complex fertilizer and biofertilizer. These
treatments, applied on the background of mineral
fertilizers and pre-sowing biofertilizer treatment, resulted
in a yield increase of 0.17tha™! (19.2%) compared to the
control. Foliar fertilization also improved technological
seed quality. Treatments involving foliar feeding, mineral
fertilizers, and pre-sowing biofertilizer application resulted
in a fat content of 40.7-42.0%, surpassing the control by
0.9-2.2% and mineral fertilizer-only treatments by 0.5-
1.9%.

The highest protein content (28.4%) was achieved in
treatments that included four foliar applications of macro-
and micronutrients on the background of mineral fertilizers
and pre-sowing biofertilizer treatment. Other fertilization
strategies resulted in protein contents ranging from 27.3—-
28.3%, exceeding the control by 0.3-1.3%. Soil nutrient
dynamics were also positively influenced by foliar
fertilization. Treatments with macro- and micronutrient
applications  improved  nitrate  nitrogen,  mobile
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phosphorus, and exchangeable potassium availability
throughout the growing season, supporting plant nutrient
uptake and overall physiological performance. Overall,
these findings confirm that foliar fertilization, when
combined with mineral fertilizers and pre-sowing
biofertilizer treatment, enhances yield components, seed
productivity, and technological quality of oilseed flax
under semi-arid conditions. This approach presents an
effective strategy for optimizing nutrient use efficiency and
improving flax production.
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