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ABSTRACT  Article History 

This review aimed to explore the role of Saccharomyces cerevisiae (S. cerevisiae) as a probiotic 

in poultry nutrition, with a focus on its effects on growth performance, gut health, immunity, 

and production parameters. The increasing demand for poultry products necessitates the 

development of sustainable strategies to increase productivity while maintaining animal health 

and ensuring food safety. The ban on antibiotic growth promoters (AGPs) due to concerns 

over antimicrobial resistance (AMR) has led to a search for viable alternatives, with probiotics 

emerging as promising candidates. Among these strains, Saccharomyces cerevisiae has gained 

attention for its multifaceted benefits in poultry nutrition. This study explored the role of S. 

cerevisiae as a probiotic, focusing on its effects on growth performance, gut health, immunity, 

and production parameters. Extensive research has shown that S. cerevisiae improves nutrient 

digestibility, enhances the gut microbiota balance, strengthens immune responses, and 

mitigates the effects of environmental stressors. In laying hens, S. cerevisiae supplementation 

has been associated with improved egg production and quality by optimizing nutrient 

absorption and calcium metabolism. However, inconsistencies in research findings, which are 

influenced by environmental conditions and supplementation protocols, necessitate further 

investigation. This review synthesizes current evidence on the application of S. cerevisiae in 

poultry diets, highlighting its potential as a sustainable alternative to antibiotics and providing 

insights into optimizing its use in antibiotic-free poultry farming. 
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INTRODUCTION 

 

 The rising global demand for poultry products has 

placed immense pressure on the industry to optimise 

productivity while ensuring food safety and sustainability. 

Traditionally, antibiotic growth promoters (AGPs) play a 

pivotal role in enhancing poultry performance. However, 

the widespread use of AGPs has contributed to the 

development of antimicrobial resistance (AMR), which 

poses a significant threat to public health (World Health 

Organisation, 2018). As a result, most countries have 

enacted stringent regulations banning AGPs in animal 

feed. This shift has created challenges in poultry farming, 

including reduced growth performance, increased disease 

susceptibility, and compromised feed efficiency. These 

issues have intensified the search for effective alternatives 

to AGPs, with probiotics emerging as a promising solution. 

 Probiotics, defined as live microorganisms that confer 

health benefits to the host when administered in adequate 

amounts, have gained considerable attention in poultry 

nutrition. Various probiotics, including lactic acid bacteria, 

Bacillus species and yeasts, have been studied for their 

ability to enhance gut health, improve immunity, and 

increase growth performance (Sapsuha et al., 2021; Ahiwe 

et al., 2021; Susalam et al., 2024; Kumalasari et al., 2025; Du 

et al., 2025). Among these strains, Saccharomyces cerevisiae 

has garnered particular interest because of its 

multifaceted  benefits  for  poultry.  As  a  yeast species, 
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S. cerevisiae not only acts as a probiotic but also provides 

prebiotic components such as mannan-oligosaccharides 

and β-glucans, which further increase the gut microbiota 

balance and immune modulation (Abd El-Hack et al., 2020; 

Bagaskara et al., 2025). 

 Extensive research highlights the positive impacts of S. 

cerevisiae on poultry performance, including improved 

nutrient digestibility, enhanced gut integrity, and increased 

resistance to stressors such as pathogens and 

environmental challenges (Elghandour et al., 2020). 

Moreover, S. cerevisiae has demonstrated potential in 

layers, improving egg production and quality through its 

role in nutrient absorption and calcium metabolism (Attia 

et al., 2020; Liu et al., 2021; Wang et al., 2021). Despite 

these benefits, some studies have reported inconsistent 

results, which are often influenced by environmental 

conditions, management practices, and variations in 

supplementation protocols (Ugwuoke et al., 2021; Sedghi 

et al., 2022). This paper explores the role of Saccharomyces 

cerevisiae as a probiotic in poultry nutrition, focusing on its 

effects on growth performance, gut health, immunity, and 

production parameters. By addressing current research 

findings and variability in outcomes, this discussion aims to 

provide insights into optimising S. cerevisiae application to 

meet the challenges of antibiotic-free poultry farming. 

 In the context of antibiotic-free poultry production, 

this review highlights the multifaceted role of S. cerevisiae 

not only as a live probiotic but also as a source of yeast-

derived prebiotics and fermentation hydrolysate. For 

example, S. cerevisiae hydrolysate is produced by the 

enzymatic processing of yeast cells. Generally, they contain 

abundant nucleotides, amino acids, yeast cell wall 

polysaccharides (mannan and β-glucans), and B vitamins 

(Takalloo et al., 2020). These components serve as 

prebiotics and immunomodulators in the gut. Similarly, 

dietary supplementation with S. cerevisiae cells has been 

shown to increase performance, enhance feed digestibility, 

improve feed efficiency (FCR), and reduce pathogenic 

bacteria (Armando et al., 2011; Elghandour et al., 2020). 

Unlike earlier reviews that treated yeast supplementation 

narrowly (often focusing on probiotics alone), our article 

unites evidence on live yeast, the yeast cell wall (YCW) 

fraction, and yeast hydrolysate (YH). This integrated 

perspective provides a comprehensive strategy for 

leveraging all forms of S. cerevisiae to optimise the health, 

immunity, and productivity of animals in modern 

antibiotic-free poultry systems. This review provides a 

unique perspective by integrating evidence on the use of 

Saccharomyces cerevisiae in poultry not only as a live yeast 

probiotic but also through its derivatives, such as yeast cell 

wall fractions and yeast hydrolysates. Unlike previous 

reviews that mainly addressed one form of yeast 

supplementation, our article synthesises findings across all 

three forms to highlight their complementary roles in 

enhancing growth performance, gut health, immune 

modulation, and production efficiency. By combining these 

strands of evidence within the context of antibiotic-free 

poultry production, this work offers a comprehensive 

framework that is new to the literature and provides 

practical insights for optimising the application of S. 

cerevisiae in modern poultry systems. 

MATERIALS & METHODS 

 

Experimental Design 

Searching, Evaluating and Selecting Articles 

 The processes of identification, screening, eligibility 

assessment, and inclusion were conducted in accordance 

with the PRISMA-P guidelines (Fig. 1), as previously applied 

in studies by Adli et al. (2024). A comprehensive search was 

performed across two electronic databases, PubMed (n = 

50) and Scopus (n = 44), yielding a total of 94 records. The 

PubMed search retrieved 49 original research articles and 

one review article, whereas the Scopus search identified 43 

original research articles and one review article. 

 During the initial screening of titles, abstracts, and 

keywords, 44 records from Scopus were excluded because 

they were duplicates of those already identified in 

PubMed. A further 18 records from PubMed were excluded 

because they did not meet the predefined eligibility 

criteria. These included one review article, four studies in 

swine, two in sheep, five in laying hens, two in turkeys, one 

in rabbits, two that did not specify the use of 

Saccharomyces cerevisiae, and one that did not report the 

relevant parameters. 

 The remaining records underwent full-text assessment 

against the inclusion criteria, which required the presence 

of treatment and control groups, the reporting of relevant 

and continuous parameters, and the use of randomisation. 

Following this rigorous process, a total of 42 studies were 

deemed eligible and included for data extraction and 

subsequent analysis. 

 The relevant search terms were developed based on 

the PICO framework, following the approach used in earlier 

studies by Adli et al. (2024), as shown in Table 1. The 

intervention element was represented by keywords such as 

"Saccharomyces cerevisiae", "live yeast", "yeast culture", 

"yeast cell walls", "mannan-oligosaccharide*", "MOS", "β-

glucan*", "yeast hydrolysate*") Moreover, the 

population/outcomes (e.g., "poultry", "chicken*", "broiler*", 

"layer*", "performance", "feed conversion", "intestinal", 

"microbiota", "immun*", "pathogen*"), while the population 

was specified via the term "broiler chicken". Articles were 

selected based on the presence of comparative data 

between the control and treatment groups. 

 These keywords were selected based on the core 

components of the PICO framework, which served as a 

guiding model for formulating the research question. In this 

study, the population was broiler chickens, the intervention 

was dietary supplementation with Saccharomyces 

cerevisiae at varying concentrations, the comparison 

referred to the control or untreated groups, and the 

outcomes included growth performance, feed efficiency, 

immune responses, and other physiological indicators. 

 

Article Extraction 

 The initial search resulted in a total of 150 potentially 

relevant articles. These articles were imported into 

Mendeley (version 1.19.8) for reference management and 

deduplication. After removing duplicates and clearly 

irrelevant entries, a structured screening process was 

undertaken to determine article eligibility. This involved a 

stepwise application of the following inclusion criteria: 
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Following the initial retrieval of articles, a rigorous 

selection process was conducted to ensure that only high-

quality and relevant studies were included in the review. 

Each article underwent a detailed screening based on a set 

of predefined eligibility criteria designed to ensure 

consistency, scientific validity, and relevance to the 

research question. 

 First, only articles written in English were considered, 

as this ensured consistency in interpretation and avoided 

issues related to translation ambiguity. Moreover, only 

studies published in full-text format were included, thereby 

excluding conference abstracts or summary-only 

publications, which often lack sufficient methodological 

and statistical detail. The focus was explicitly restricted to 

studies published in peer-reviewed journals to ensure that 

the included works had undergone scholarly evaluation 

and met acceptable scientific standards. Central to the 

inclusion process was the need to investigate the effects of 

dietary supplementation with Saccharomyces cerevisiae in 

broiler chickens. Studies that used other poultry species or 

did not report the use of Saccharomyces cerevisiae were 

excluded from the analysis. Each selected article needed to 

clearly specify the source or form of the Saccharomyces 

cerevisiae used, as variations in different structures could 

significantly influence biological outcomes. To ensure 

transparency and reproducibility, the number of 

experimental replicates for each treatment group was 

reported. Additionally, articles need to state the total 

number of broiler chickens used, as this information is 

essential for understanding the statistical power and 

generalizability of the results. The age of the birds at the 

start of the trial also had to be clearly specified, as 

physiological responses to dietary interventions may vary 

depending on the birds' developmental stage. 

 

 

 

 

 
Fig. 1: PRISMA Flow Diagram of the Study Selection Process for the review. 

Saccharomyces cerevisiae as a Probiotic in Poultry 

 For decades, antibiotics have been used to increase 

poultry productivity. Antibiotic growth promoters (AGPs), 

which are synthesised by microorganisms, also contribute 

to bacterial resistance in humans (WHO, 2018). However, 

following the prohibition of AGPs in most countries, 

numerous challenges have emerged in poultry farming, 

particularly a decline in productivity, increased disease 

incidence, and increased poultry mortality rates. 

Researchers have sought alternatives to antibiotics in the 

poultry industry, one of which is the use of probiotics. 

Probiotics are defined as feed additives containing live 

microorganisms. In poultry, probiotics can improve 

production, maintain physiological status, reduce stress, 

control diseases, and stabilise the gut microflora 

(Sugiharto et al., 2021; Pratama et al., 2021). Various 

microorganisms are classified as probiotics, including lactic 

acid bacteria, fungi, and particular yeast species (Al-

Khalaifa et al., 2019). These microorganisms are known to 

increase the physiological condition, health, and 

production performance of poultry. 

 Among probiotics, Saccharomyces cerevisiae has 

garnered significant attention in recent decades. S. 

cerevisiae is a yeast widely applied in the poultry industry 

as a probiotic (Pratama et al., 2021). The recommended 

dosage of yeast in poultry feed ranges between 10⁸ and 

10¹⁰ CFU (Maksimović et al., 2022). Numerous studies have 

reported the positive effects of yeast supplementation on 

poultry hosts. Yeast improves gut health, modulates 

immunity, enhances growth performance, and alleviates 

stress challenges, including inflammatory and 

environmental stressors (Ahiwe et al., 2021). Elghandour et 

al. (2020) reported that S. cerevisiae enhances feed 

efficiency, digestibility, and production performance; 

reduces pathogenic bacterial populations; and mitigates 

the adverse effects of environmental stress on poultry. 

 

Effects of S. cerevisiae on Poultry Health and 

Performance 

 Research on S. cerevisiae supplementation as a 

probiotic in poultry feed (Table 1) has demonstrated its 

ability to mitigate the effects of the AGP ban. The 

prevention of AGPs aims to minimise the risks associated 

with antibiotic residues in poultry-derived food products, 

such as meat and eggs. However, the ban has led to 

reduced poultry performance. Studies highlight the 

efficacy of S. cerevisiae in maintaining intestinal health and 

immune status to achieve optimal production in broiler 

chickens (Wickramasuriya et al., 2022). S. cerevisiae 

balances the gut microbiota and stimulates the immune 

system (Al-Shawi et al., 2020). It facilitates competitive 

exclusion of pathogenic bacteria in the gut, as pathogenic 

bacteria adhere to the yeast surface, which removes them 

from the gut and inhibits their colonisation of the intestinal 

wall (Elghandour et al., 2020; Maoba et al., 2021). 

Additionally, yeast releases antibacterial compounds that 

target pathogens and toxins (Gil-Rodríguez & Garcia-

Gutierrez, 2021). Furthermore, S. cerevisiae lowers the 

intestinal pH through the production of various organic 

acids during fermentation (Chichlowski et al., 2007). These 

organic acids contribute to gut colonisation and provide 
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metabolites, such as amino acids and B vitamins, which 

support intestinal development (Elghandour et al., 2020; 

Gil-Rodríguez & Garcia-Gutierrez, 2021). Notably, gut 

colonisation is critical for gastrointestinal tract 

development and mucosal immune protection during the 

neonatal period. 

 In recent years, S. cerevisiae has been recognised for 

its role in enhancing intestinal barrier integrity by 

upregulating tight junction proteins, including claudin, 

occludin, zona occludens-1 (ZO-1) and junctional 

adhesion molecule A (JAM-A) (Ducray et al., 2019). These 

proteins regulate intercellular spacing in the intestine, 

ensuring barrier stability and function (Massacci et al., 

2019). Yeast also serves as a bioregulator of the gut 

microflora, improving the gut morphology and mucosal 

structure (Xu et al., 2018). 

 Yeast stimulates the secretion of digestive enzymes, 

such as protease, amylase, and lipase, which enhance 

the digestion and absorption of nutrients, including 

proteins, carbohydrates and fats (Ahiwe et al., 2019c; 

Śliżewska et al., 2020). Efficient nutrient absorption 

directly improves poultry performance (Muthusamy et 

al., 2011; Shankar et al., 2017). 

 There is no space between values and units; it follows 

the green space. Also, write references as shown with 

green font in all Tables. 

 

Impact on Egg Production and Quality 

 S. cerevisiae also benefits layer poultry (Table 2), 

improving egg production in terms of both quality and 

quantity (Hassanein & Soliman, 2010; Özsoy et al., 2018). 

Yeast reduces the intestinal pH and secretes antimicrobial 

compounds, supporting the growth of beneficial probiotics 

and the accumulation of short-chain fatty acids (Forte et 

al., 2016). Live yeast cells contain various digestive 

enzymes that increase nutrient absorption and serum 

calcium levels, thus improving eggshell quality (Attia et al., 

2020). Probiotics further stimulate follicular development 

by increasing the serum levels of follicle-stimulating 

hormone (FSH) and estradiol (E2), leading to improved 

reproductive performance (Lei et al., 2013). 

 

Challenges and Variability in Research Findings 

 Despite the reported benefits, some studies have 

reported inconsistent results. For example, Ugwuoke et 

al. (2021) reported no significant effect of S. cerevisiae 

supplementation on broiler chicken performance. 

Similarly, its effects on blood biochemistry and 

antioxidant enzymes in native broiler chickens are limited 

(Sugiharto et al., 2019). Stress factors, including 

environmental challenges, may undermine the 

physiological benefits of probiotics by disrupting immune 

responses and gut function (Abo-Al-Ela et al., 2021). 

 

Saccharomyces cerevisiae as a Prebiotic in Poultry 

 In recent years, prebiotics have gained considerable 

attention as alternatives to antibiotic growth promoters 

(AGPs). Prebiotics contribute to gut health, prevent 

pathogenic agents, and improve production performance 

(Table 3). Yeast, a microorganism with prebiotic properties, 

plays a crucial role in this process. Mannan 

oligosaccharides (MOSs), fructo-oligosaccharides (FOSs), 

galacto-oligosaccharides (GOSs), and trans-galacto-

oligosaccharides (TOSs) are the most common 

carbohydrate components found in yeast cell walls. 

Prebiotics provide nutrients (Adli et al., 2023) to probiotics 

in the gut, aiding fermentation processes that require 

carbohydrates as an energy source. Fermentation by gut 

microorganisms produces short-chain fatty acids (SCFAs) 

and organic acids, including lactic acid, butyric acid, and 

propionic acid (Davani-Davari et al., 2019), which improve 

the performance of broiler chickens (Adli et al., 2024). 

 Among various yeast species, Saccharomyces 

cerevisiae is the most widely used additive in poultry 

farming because of its beneficial effects on gut health. 

Optimal  gut  health  and  immunity are closely linked to 

 
Table 1:  Effects of S. cerevisiae on poultry performance and health   

Commodity Levels in feed Treatment period Effects on poultry References 

Broiler chickens 0.7, 1.2, and 1.7 

g/kg 

1-28 days of age Improved body weight gain and FCR in broiler chicken Osita et al. 2020 

Broiler chickens 1.5 g/kg 2-6 weeks of age Increase body weight gain, fcr, and decrease cholesterol and glucose in the blood Rafique et al. 2018 

Broiler chickens 0.2% 1–42 days of age Increase body weight gain, fcr, carcass traits, blood parameters, and immunity Mousa 2018 

Broiler chickens 0.3% 1-43 days of age Highest carcass yield and lowest abdominal fat compared with the control Hana et al. 2015 

Broiler chickens 0.5, 1, and 1.5 

g/kg 

14-36 days of age Enhanced lactic acid bacteria, decreased E. coli intestinal microflora, and 

reduced cholesterol content of broiler meats 

Wulandari et al. 

2020 

Broiler chickens 1.5, 2.0, 2.5, and 

3.0% 

22-56 days of age Improved bw and FRC Lawrence-Azua et 

al. 2018 

Broiler chickens 0.5, 1.0, 1.5 g/kg 14-35 days of age Improving health status and increasing lactic acid bacteria in the duodenum Wulandari and 

Syahniar, 2018 

Broiler chickens 1.5 and 2% 1-42 days of age Improved the carcass traits, including dressing, breast, legs, liver, heart, gizzard, 

and abdominal fat 

Paryad  and 

Mahmoudi 2008 

Broiler chickens 0.5 g/kg 1-28 days of age Decrease in serum nitric oxide content compared to the control on day 27 Wang et al. 2016 

Broiler chickens 0.05% 1-35 days of age Increase in anti-Newcastle virus serum titres (21 d). Wang et al. 2017 

Broiler chickens 2.5 g/kg 1-38 days of age Increase the villi height and crypt depth in the duodenum, jejunum, and ileum. Gao et al. 2008 

Broiler chickens 0.5-1 g/kg 1-42 days of age The height of the microvilli of the jejunum and ileum was significantly higher 

compared to the control. 

He et al. 2021 

Broiler chickens 2 g/kg 1-36 days of age S. cerevisiae (2 g/kg) improved body weight and feed conversion ratio while 

reducing cholesterol levels in plasma, liver, and meat 

Attia et al. 2023 

Indonesian 

indigenous 

crossbreed chicken 

0.3% 1-8 weeks of age Improve body weight, cumulative feed intake, FCR, decrease economic cost, and 

enhance income overall. Increased proventriculus relative weight & wings.  

Improve serum biochemistry, uric acid of 

Sugiharto et al. 

2019 

Boschveld chickens 2.5, 5.0, 7.5, 10.0, 

and 12.5g/kg 

1-91 days of age Improved packed cell volume (PCV), haemoglobin (Hb), mean cell haemoglobin 

(MCH), and mean cell volume (MCV) 

Maoba et al. 2021 

http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2077-99172025000100093#B45
http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2077-99172025000100093#B27
http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2077-99172025000100093#B49
http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2077-99172025000100093#B49
http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2077-99172025000100093#B70
http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2077-99172025000100093#B73
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Table 2:  Effects of S. cerevisiae on egg production and quality  

Commodity Levels in feed Treatment period Effects on poultry References 

Laying hens 0.20% 40-50 weeks of age Reduced eggshell thickness, improved yolk and albumen weight, haugh unit, egg 

grading, and increased crude protein digestibility 

Hameed et al., 

2019 

Laying hens 0.05, 0.10, 0.50, 

1.0, and 3.0% 

37-47 weeks of age Improved on egg production, egg quality, nutrient digestibility, and gut microflora Park et al., 2020 

Laying hens 0.4% and 0.8% 70-79 weeks of age Improved egg production, feed conversion, egg mass, and gut microbiota by 

increasing Lactobacilli, reducing pathogenic bacteria, and decreasing blood cholesterol 

Hassanein 

and Soliman, 2010 

Laying 

Quail 

2.0 and 2.5% 1-14 weeks of age Improved egg production rate, egg mass, egg number, and eggshell quality, without 

affecting feed intake or most internal egg quality traits.  Feed conversion ratio 

improved slightly in one treatment 

 (Yousif & Kloor, 

2023) 

 

improved performance in poultry. The yeast cell wall, which 

is composed of α-mannan oligosaccharides, 

mannoproteins, and β-glucans (Klis et al., 2002; Koiyama et 

al., 2018; Amiri et al., 2019), supports growth, intestinal 

health, and immune responses (del Valle et al., 2023; Ahiwe 

et al., 2019b). The cell wall of S. cerevisiae contains 

approximately 30% glucan, 30% mannan, and 12.5% 

protein (Baek et al., 2024; Lesage & Bussey, 2006) and is 

rich in proteins such as aspartic acid, glutamic acid, serine, 

and methionine (Hung Hsu et al., 2015; Baek et al., 2024). 

Additionally, S. cerevisiae produces vitamins, amino acids, 

and enzymes, while its cell wall components provide 

energy for the ability of gut probiotics to thrive. Probiotics 

in the gut suppress pathogenic bacteria by reducing the 

pH of the gastrointestinal tract (GIT) through organic acid 

production (Sugiharto & Ranjitkar, 2019; Pratama et al., 

2022). A lower gut pH also enhances nutrient absorption. 

 Mannan oligosaccharides, mannoproteins, and β-

glucans improve growth performance by enhancing gut 

morphology, immunity, and microbial balance in the GIT 

(Alqhtani et al., 2024; Morales-López et al., 2009). In 

particular, MOSs regulate microbial populations in the GIT 

and positively impact growth performance and health (Teng 

et al., 2021). In addition to balancing the gut microbiota, S. 

cerevisiae has shown potential in mitigating the effects of 

mycotoxins, including aflatoxins and ochratoxins, which can 

impair poultry health (Mendieta et al., 2018). Mycotoxins 

from feed may also leave residues in poultry products such 

as meat and eggs (Alaboudi et al., 2022) while inhibiting 

nutrient absorption. MOS acts as a ligand for pathogenic 

bacteria, binding pathogens to MOS instead of the intestinal 

wall, thereby flushing them out without colonisation 

(Benites et al., 2008; Arif et al., 2020). Moreover, MOS 

serves as an energy source for gut probiotics, which 

promote intestinal health and broiler chicken immunity 

(Kyoung et al., 2023). Yeast cell wall supplementation has 

been reported to improve feed efficiency and weight gain 

(Kyoung et al., 2023), while also enhancing carcass yield 

and the quality of broiler chicken meat (Tavaniello et al., 

2018). Notably, broiler chicken meat remains one of the 

most significant sources of protein worldwide. 

 β-glucans in yeast cell walls promote the growth of 

beneficial gut bacteria such as Lactobacillus sp., 

contributing to intestinal health (Zhen et al., 2021; Fathima 

et al., 2023). Additionally, β-glucans enhance immune 

responses to vaccines, such as Newcastle disease virus 

(NDV) vaccines, in broiler chickens (Shahir et al., 2014; An 

et al., 2008). For example, antibody titres against viruses 

reflect immune responses regulated by cytokine signalling 

(Teng et al., 2021; Deist et al., 2017). Rehman et al. (2020) 

reported that prebiotics provide energy for maintaining a 

balanced gut microbiota. Probiotics convert β-(1,3)-glucan 

into usable forms through glucanase and β-(1,3)-

glucosidase activity (Helbert et al., 2019; Zhen et al., 2021), 

thereby increasing nutrient absorption, promoting weight 

gain, and improving the feed conversion ratio (FCR). Broiler 

chickens, which are sensitive to temperature fluctuations, 

often face stress. Studies have shown that MOS 

supplementation reduces corticosterone levels under heat 

stress (Sayed et al., 2023; Chen et al., 2020). The 

hypothalamic-pituitary-adrenal (HPA) axis is activated 

under heat stress, resulting in increased serum 

corticosterone concentrations and altered physiological 

conditions (Huang et al., 2024; Oluwagbenga & Fraley, 

2023). Stress markers, such as corticosterone, 

heterophil/lymphocyte ratios, heat shock protein 70 

(HSP70), and mRNA expression, provide insights into 

physiological stress responses (Wein et al., 2017; 

Onagbesan et al., 2023). 

 In addition to its use in broiler chickens, S. cerevisiae 

supplementation has shown promise in laying hens. 

Studies indicate that yeast supplementation improves both 

egg quality and egg quantity. Additionally, yeast cell wall 

supplementation has been shown to lower feed costs in 

laying hen farming (Muthusamy et al., 2011; Koiyama et al., 

2018). The improved feed efficiency contributes to 

profitability and enhances the physical and chemical 

quality of eggs, a critical source of global protein. Tang et 

al. (2015) reported that prebiotic supplementation reduced 

cholesterol, saturated fatty acid (SFA), and stearic acid 

levels while increasing the unsaturated fatty acid (UFA)-to-

SFA ratio, including linoleic and alpha-linolenic acids, 

without affecting egg quality or fat, carotenoid, or vitamin 

E contents. Vitamin E serves as an active antioxidant, 

reducing free radicals in the body. 

 Although many studies highlight the benefits of S. 

cerevisiae as a prebiotic, some research presents 

contrasting findings. For example, Sedghi et al. (2022) 

reported no significant effects of S. cerevisiae 

supplementation on broiler chicken weight gain, feed 

intake, or FCR. Dos Santos et al. (2021) reported no 

influence on broiler chicken body weight, feed conversion, 

or relative weights of the liver, gizzard, heart, or bursa of 

Fabricius. Factors such as management conditions and 

environmental stressors can impact the efficiency of S. 

cerevisiae supplementation (Sedghi et al., 2022). Pathogen 

challenges in the gut, particularly those involving gram-

negative bacteria with endotoxins such as 

lipopolysaccharides (LPS), may also impede performance 

(Shaji et al., 2023; Erinle et al., 2022). Physiologically, 

livestock can tolerate disease and stress, but stress-

induced metabolic changes often impair not only 

performance but also product quality (Akinyemi & 

Adewole, 2021). 

https://pubmed.ncbi.nlm.nih.gov/?term=%22Lesage%20G%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Bussey%20H%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Hsu%20PH%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Oluwagbenga%20EM%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Fraley%20GS%22%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=%22Shaji%20S%22%5BAuthor%5D
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Table 3: Effects of S. cerevisiae as prebiotics on poultry  

Commodity Levels in feed Treatment 

period 

Effects on poultry References 

Broiler 

chickens 

1 g/kg 1-42 days of 

age 

Improve growth and decrease FCR.  Increase the level of antibody in broiler, villus 

height in the jejunum, and Lactobacillus in the duodenal and jejunal broiler chicken 

Muthusamy et 

al. 2011 

Laying 

hens 

225, 450, or 900 ppm 21-67 weeks 

of age 

Improved feed intake, egg production, egg quality (albumen height, Haugh unit, 

shell thickness, yolk color), and profitability in laying hens, despite higher feed costs. 

Koiyama et al. 

2018 

Broiler 

chickens 

500 mg/kg 1-42 days of 

age 

Increased villus height of the jejunal mucosa of the broiler chicken Morales-López 

et al. 2009. 

Broiler 

chickens 

2 g/kg 1-35 days of 

age 

Ameliorate the adverse effects of Salmonella LPS challenge, improving the 

performance (BWG & FCR), flock uniformity, and meat yield of broiler chicken 

Ahiwe et al 

(2019a). 

Broiler 

chickens 

2 g/kg 1-35 days of 

age 

Improving physiological response and improving performance under subclinical 

necrotic enteritis challenge in broiler chicken 

Ahiwe et al. 

2019b 

Broiler 

chickens 

0.3% 1-35 days of 

age 

Improved bw and fcr, and reduced oxidation causes stress.  The yeast cell wall may 

improve the ileal villus development of broiler 

Zhang et al. 

2005 

Broiler 

chickens 

0.1, and 0.2% 1-42 days of 

age 

Supplementing with 0.2% SCCW improved body weight gain and feed conversion, 

while also enhancing intestinal development, as indicated by increased villus 

height, particularly during the first week of age. 

Santin et al. 

2001 

Broiler 

chickens 

Bio-Mos® (2 g/kg and 4 g/kg), 

MRF (0.1 g/kg and 0.2 g/kg), 

Bio-Mos® (2 g/kg) + MRF (0.1 

g/kg), Bio-Mos® (4 g/kg) + 

MRF (0.2 g/kg) 

1-15 days of 

age 

Increased goblet cell size and density, suggesting a positive impact on gut health in 

broilers. 

Brümmer et 

al. 2010 

Broiler 

chickens 

0.2% 1-42 days of 

age 

Feeding 0.2% SCCW improved body weight gain and FCR, enhanced gut 

development as indicated by increased villus height during the first week of life. 

Tarekar et al. 

(2023). 

Broiler 

chickens 

0.2% 1-28 days of 

age 

Maintain intestinal integrity in broilers vaccinated against coccidiosis by supporting 

epithelial turnover 

Luquetti et al. 

2012 

Broiler 

chickens 

2 kg/ton + contaminated 

ochratoxin A (OTA) 

1-49 days of 

age 

Enhanced daily gain, immune response, and vaccine effectiveness in chickens 

exposed to ochratoxin. It reduced lesion severity and restored phagocytic activity, 

helping manage ochratoxicosis and immune dysfunction 

Awaad et al. 

2011 

Broiler 

chickens 

1 g/kg 1-42 days of 

age 

Improved immune markers and antioxidant status in broilers, including enhanced 

SIgA, IgG, and T-SOD activity, and reduced MDA levels. 

Li et al. 2016 

Laying 

hens 

100, 200 mg β-glucan/kg diet 56-58 weeks 

of age 

Supplementing 200 mg/kg β-glucan in laying hens under heat stress improved FCR, 

immunity, HSP70 levels, egg production, nutrient digestibility, and reduced stress 

indicators.  Early heat shock and βG together enhanced performance and immune 

responses during reproduction. 

Ezzat et al. 

2024 

 

 Moreover, probiotics enhance the performance, 

health, and immunity of poultry across all ages. They 

promote gut health by balancing gut bacteria, supporting 

gut maturation, preventing inflammation, and 

strengthening immune responses (Rehman et al., 2020). 

Furthermore, probiotics improve feed digestion by 

increasing digestive enzyme activity, reducing bacterial 

enzyme activity, lowering methane production, neutralising 

enterotoxins, and stimulating immune function (Rehman et 

al., 2020; Alagawany et al., 2020; Soomro et al., 2019). 

 

Saccharomyces cerevisiae Hydrolysate as a Feed 

Additive for Poultry 

 Yeast hydrolysate is a relatively novel product in 

livestock applications and has not been widely studied. 

Several researchers have explored its positive impacts on 

the poultry industry, with significant results (Table 4). 

Hydrolysis can be carried out through various processes, 

one of which involves enzymatic catalysis (Lin et al., 2023) 

to release bioactive components from the yeast cell wall 

(Schiavone et al., 2014). According to Takalloo et al. (2020), 

enzymatic hydrolysis is considered more effective than 

other methods, such as autolysis. 

 Yeasts, or fungal cultures, are unique eukaryotic 

microorganisms measuring approximately 3–4 microns 

(Walker et al., 2002). The byproducts or derivatives of yeast 

fermentation (secondary metabolism) include live yeast 

cells, dead cells, and yeast cell wall fragments. Yeast is 

known to be rich in bioactive compounds, including 

proteins, vitamins, minerals, peptides, oligosaccharides, 

and enzymes, which are beneficial to animal health (Wang 

et al., 2021; Perricone et al., 2022). Saccharomyces 

cerevisiae hydrolysate (SCH) typically contains B vitamins, 

nucleotides, amino acids, and polysaccharides such as β-

glucans and mannan-oligosaccharides found in yeast cell 

walls (Lin et al., 2023; Araujo et al., 2018). 

 For example, dietary nucleotides aid in improving 

intestinal epithelial cell maturation, as demonstrated by 

increased mucosal protein production, DNA synthesis, and 

intestinal morphological development (Sauer et al., 2010). 

This contributes to improved gut health, immunity, and 

production performance in broiler chickens (Kamel et al., 

2021; Kreuz et al., 2020; Rady et al., 2023). Moreover, β-

glucans and mannan-oligosaccharides function as 

prebiotics that regulate and maintain the balance of the 

gut microbiota, which is closely linked to gut health (Lin et 

al., 2023). Additionally, Saccharomyces cerevisiae reportedly 

enhances feed palatability because of its distinct aroma 

(Demirgül et al., 2022). 

 Poultry, including broiler chickens and layers, serve as 

critical sources of animal protein worldwide. In addition to 

good farm management, improving gut health, the gut 

ecological balance, and immunity is essential for optimising 

production performance (Pratama et al., 2021; Sugiharto et 

al., 2022). Numerous studies have investigated the efficacy 

of yeast hydrolysate in poultry production. Sampath et al. 

(2021) reported that supplementing broiler chicken diets 

with S. cerevisiae hydrolysate improved weight gain, the 

feed conversion ratio (FCR), nutrient digestibility, and 

beneficial lactic acid bacteria (LAB) populations while 

reducing pathogenic bacteria in the gastrointestinal tract. 

Furthermore, yeast hydrolysate supplementation reduces 

NH₂ and H₂S gas emissions in poultry houses, which, if 

excessive, can lead to stress, respiratory damage, and 
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disease outbreaks, significantly affecting production and 

profitability (Sampath et al., 2021). 

 Yeast hydrolysate has also been shown to support the 

antioxidant status of animals (Perricone et al., 2022). 

Supplementation can modulate serum superoxide dismutase 

(SOD), glutathione peroxidase (GPX), glutathione (GSH), and 

total antioxidant capacity (TAC). The effectiveness of yeast 

hydrolysate supplementation depends on the dosage, with 

higher doses correlating with improved production 

performance and health outcomes (Pérez et al., 2020; Al-

Abdullatif et al., 2024). Interestingly, studies revealed that 

broiler chicken chicks from parent stock supplemented 

with 5 kg/tonne of yeast hydrolysate presented better 

growth performance and FCR than offspring from 

supplemented parent stock (Araujo et al., 2018). 

 However, the most efficient dosage and the specific 

mechanisms underlying its effects on production 

performance and cost efficiency remain unclear. Other 

studies have reported that yeast hydrolysate improves 

antibody levels, the villus height in the jejunum, and LAB 

populations in the duodenum and jejunum of broiler 

chickens (Muthusamy et al., 2011). 

 The immune system is vital for maintaining health and 

supporting growth, as disease outbreaks and stress can 

negatively impact an animal's physiology and metabolism, 

which are closely tied to optimal production performance. 

 For laying hens, supplementation with S. cerevisiae 

hydrolysate has been reported to improve egg production, 

reduce egg cholesterol content, and enhance humoral 

immunity (Yalcın et al., 2010; Yalcın et al., 2012). Mannan-

oligosaccharides (MOSs) in the yeast cell wall play 

important roles in these effects (Xiao et al., 2012; Yalcın et 

al., 2013). Fermented MOS and β-glucans by gut bacteria 

produce short-chain fatty acids (SCFAs), which acidify the 

colon and serve as substrates for enterocyte energy 

production (Liu et al., 2021), thereby improving intestinal 

absorption (Bortoluzzi et al., 2018; Perricone et al., 2022). 

The acidic gut environment also suppresses the growth of 

pathogenic bacteria (Cisek & Binek, 2014) and enhances 

intestinal mucosa integrity, potentially leading to optimal 

nutrient absorption and egg production (Spring et al., 

2000; Shashidhara & Devegowda, 2003). 

 While yeast hydrolysate shows significant promise, 

some studies report inconsistent results. Yalcın et al. (2010) 

reported no significant effects of S. cerevisiae 

supplementation on egg characteristics, including the 

Haugh unit, yolk index, shell thickness, albumen height, 

and shell strength. These findings align with earlier 

research by Yalcın et al. (2008), suggesting that the 

bioactive compounds in yeast, such as β-glucans, may not 

always yield significant results. 

 

Mechanism of Action of Saccharomyces cerevisiae 

 The primary mechanism of S. cerevisiae in maintaining 

poultry gut health involves modulating the gastrointestinal 

microbiota and oxygen scavenging in the digestive tract, 

thereby favoring the growth of beneficial anaerobic 

bacteria (Massacci et al., 2019; Soren et al., 2024). Cell wall 

components, particularly β-glucans and mannan-

oligosaccharides, act as prebiotics and immunostimulants 

that enhance mucosal immune responses, such as 

increasing secretory IgA production (Anwar et al., 2017; 

Chacher et al., 2017). In addition, S. cerevisiae competes 

with pathogens for epithelial adhesion sites and prevents 

the attachment of harmful bacteria (e.g., Escherichia coli), 

thereby reducing intestinal invasion and inflammation 

(Massacci et al., 2019; Elghandour et al., 2020). Collectively, 

these mechanisms help maintain gut microbial 

homeostasis and strengthen host immunity, supporting its 

role as a safe and functional feed additive in the antibiotic-

free era of poultry production (Fig. 2). 

 

Potential Pathogenesis of Saccharomyces cerevisiae 

 Although Saccharomyces cerevisiae is widely 

recognised as a safe and beneficial microorganism, its 

potential pathogenicity under certain conditions should not 

be overlooked (Fig. 3). Generally, S. cerevisiae is considered 

nonpathogenic and is granted GRAS (generally recognised 

as safe) status in food and feed applications. However, in 

immunocompromised hosts or under specific predisposing 

factors, this yeast has occasionally been reported to act as 

an opportunistic pathogen. The pathogenic potential of S. 

cerevisiae is associated with several mechanisms: first, 

adhesion and colonisation – Certain strains may adhere to 

epithelial surfaces, facilitating their translocation across 

mucosal barriers. Second, while acting as 

immunomodulators, cell wall components, such as β-

glucans and mannoproteins, can also trigger excessive 

inflammatory responses in susceptible hosts. Third, 

enzymatic activity—Some clinical isolates produce 

hydrolytic enzymes (e.g., proteases and phospholipases) 

that may contribute to tissue invasion. Fourth, immune 

evasion—The thick yeast cell wall can hinder phagocytosis, 

allowing yeast cells to persist in host tissues. 

 
Table 4:  Effect of Saccharomyces cerevisiae hydrolysate on Poultry  

Commodity Levels in feed Treatment period Effects on poultry References 

Broiler 

chickens 

0.3% of feed 1-35 days of age Increase body weight and improved feed conversion El-Manawey 

et al. 2021 

Broiler 

chickens 

0.1%, and 0.2% 1-32 days of age Improve body weight gain and nutrient digestibility of DM and N, increase the 

number of Lactobacillus, and decrease the E. coli counts.  Decreased drip loss, 

noxious gas (NH3 and H2S), and cholesterol level 

Sampath et 

al. 2021 

Broiler 

breeder 

5 kg/ton 35-45 weeks of 

age 

Improve gut health, increase egg production,  increase fertility, increase egg 

hatchability, and improve fertile egg hatchability 

Araujo et al. 

2018 

Broiler 

chickens 

1 g/kg 1-42 days of age Enhance growth performance, feed efficiency, production performance, and 

humoral immune responses in broilers. 

Muthusamy 

et al. 2011 

Broiler 

chickens 

500 mg/kg in starter and 

grower; 250 mg/kg in finisher 

1-42 days of age Increased cecal bacterial diversity, boosted beneficial SCFA-producing bacteria, 

and improved gut health, contributing to better growth performance. 

Lin et al. 

2023 

Broiler 

chickens 

1.0; 2.0; 3.0; 4.0 g/kg 1-42 days of age Increased growth performance, increased immunocompetence, and a reduction 

in the total amount of E. coli in the intestine. 

Yalcin et al. 

2013 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/egg-hatchability
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/egg-hatchability
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Fig. 2: Mechanism of Action of S. cerevisiae in Poultry Gut Health.  

 

 

 

Fig. 3: Probiotic Benefits and Pathogenic Potential of Saccharomyces 

cerevisiae in Poultry.  

 

 In veterinary contexts, pathogenic cases are 

uncommon, and the strains used in poultry feed are 

specifically selected for their safety and probiotic 

functionality. Therefore, while the general risk of 

pathogenicity is very low, a clear understanding of these 

mechanisms is crucial for differentiating between safe 

probiotic strains and opportunistic clinical isolates. This 

distinction reinforces the importance of careful strain 

selection and controlled supplementation when S. 

cerevisiae is applied in poultry production systems. 
 

Conclusions 

 In conclusion, S. cerevisiae shows great potential as a 

probiotic in poultry nutrition, addressing issues arising 

from the AGP ban. However, the variability in research 

findings underscores the need for further studies to 

optimise its application in diverse production systems. 

Saccharomyces cerevisiae hydrolysate and its derivatives 

present potential benefits for improving poultry 

production through enhanced gut health, immunity, and 

nutrient absorption. However, further research is needed 

to establish consistent findings, optimal dosages, and 

mechanisms of action. 
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