



## Milking Frequency Optimization for Health and Productivity in Lactating Bactrian Camels

Faruza Zakirova <sup>1</sup>, Aliya Akhmetaliyeva <sup>1</sup>, Gulsara Kassimova <sup>1</sup>, Saniya Zhumagazieva <sup>2</sup>, Marklen Shukurov <sup>1</sup>, Bekzhassar Sidikhov <sup>1</sup>, Kenzhebek Murzabayev <sup>1</sup>, Balaussa Yertleuova <sup>1</sup>, Dosmukan Gabdullin <sup>1</sup>, Izimgali Zhubantayev <sup>3\*</sup> and Baktykanym Kadraliyeva <sup>1\*</sup>

<sup>1</sup>Non-profit JSC Zhangir Khan West Kazakhstan Agrarian and Technical University, Uralsk, Republic of Kazakhstan

<sup>2</sup>Non-profit JSC Kazakh Agrotechnical Research University named after Saken Seifullin, Astana, Republic of Kazakhstan

<sup>3</sup>Private Higher Professional Educational Institution West Kazakhstan Innovative-Technological University, Uralsk, Republic of Kazakhstan

\*Corresponding author: [zhubantayev@mail.ru](mailto:zhubantayev@mail.ru) (IZ); [bkadralieva@mail.ru](mailto:bkadralieva@mail.ru) (BK)

### ABSTRACT

This study evaluated the effect of different milking routines on the milk productivity of Kazakh Bactrian camels in the West Kazakhstan region. Sixty female camels were divided into four groups, each having three replicates, with milking intervals every 2, 3, 4, and 6 hours. Milk yields and physicochemical parameters of milk (fat content, density, protein content, sugar, and ash substances) were measured. The results showed that the highest productivity, 1,498.5L per period was observed when milking every 2 hours, especially during the first 3 months of lactation (57.26% of the total milk yield). However, under this routine, milk density and fat content decreased. The optimal milk quality (fat content: 5.82%, density: 1.031g/cm<sup>3</sup>) was achieved at an interval of 4 hours. The most effective routine in terms of productivity is milking every 2-3 hours; however, for a balance between milk quality and animal health, milking once every 3 to 4 hours is preferable. Excessively frequent milking requires strict monitoring and proper feeding, while less frequent milking reduces overall productivity.

**Keywords:** Bactrian camel; Milk; Productivity; Lactation; Physicochemical parameters.

### Article History

Article # 25-412

Received: 16-Jul-25

Revised: 11-Sep-25

Accepted: 07-Nov-25

Online First: 21-Nov-25

### INTRODUCTION

Camel breeding in Kazakhstan is a traditionally established branch of productive livestock farming (Bolaev, 2012; Akhmetadykova et al., 2022). Camel breeding is of great economic importance in the economic development of vast territories in Kazakhstan, half of which are in desert and semi-desert zones (Koptileuov et al., 2024; Aidarbayeva et al., 2025; Nazarova et al., 2025). Zootechnical research and practice at the present stage is to preserve and improve the variety of economically valuable and biologically significant traits of Kazakh Bactrian camels (Bozymov et al., 2013; Doshanov et al., 2013; Abutalip et al., 2024; Tariq et al., 2024). Preserving genetic diversity within the existing gene pool while enhancing their productivity and reproductive ability remains a pressing issue when breeding Kazakh Bactrian camels (Baimukanov et al., 2017). Kazakh Bactrian camels

are also reared for meat, but they are used as dairy animals in routine practices (Bekenov et al., 2023).

Camel milk is a basic need for sustaining of the people and they achieve multiple products from the milk (Tariq et al., 2024). The milk economics chiefly depends upon the quality and quantity of milk. Camel rearing people have to achieve a sufficient quantity of milk to fulfill their needs, simultaneously a low-quality milk has low demand in the market (Alhassani, 2024). Milk quality and quantity depends upon multiple factors, including nutrition, management diseases and environmental conditions (Tanimoun et al., 2021). Because of frequent observations of these factors, they are maintained, but multiple other factors, i.e., milking techniques, frequency, and duration, are not reported (Bai & Zhao, 2015). Research states that the interval in milking has a strong association with the quality and quantity of milk in dairy animals. For quality and quantity, an optimum interval is necessitated, which needs experimentation.

**Cite this Article as:** Zakirova F, Akhmetaliyeva A, Kassimova G, Zhumagazieva S, Shukurov M, Sidikhov B, Murzabayev K, Yertleuova B, Gabdullin D, Zhubantayev I and Kadraliyeva B, 2026. Milking frequency optimization for health and productivity in lactating bactrian camels. International Journal of Agriculture and Biosciences 15(2): 630-635. <https://doi.org/10.47278/journal.ijab/2025.192>



A Publication of Unique Scientific Publishers

This research has been designed to assess the effect of varying intervals during milking span of Kazakh Bactrian camels to check the effects of interval of milking on quantity and quality of the milk. This is a pioneer study on Kazakh Bactrian camels and provides a helpful insight on the milking of camels.

The study's purpose is to analyze the effect of the frequency of milking on the milk productivity of camels, evaluate the dynamics of milk yield and changes in the physicochemical characteristics of milk depending on the interval between milking, and determine the optimal milking routine to increase milk productivity and ensure animal health in the West Kazakhstan region.

## MATERIALS & METHODS

### Location

The study on milk productivity in Kazakh Bactrian camels was conducted at the Khanskaya Orda LLP in the Bokey Orda district of the West Kazakhstan region (Fig. 1).



**Fig. 1:** Location Map.

### Experiment Design

The experiment involved 60 camels, which were divided into 4 groups, each having 3 replicates, with 5 female lactating camels in each group. All the camels were maintained at standard feeding and keeping. The groups were based on the interval of milking. In group 1, the camels were milked every 2 hours, while groups 2, 3, and 4 were milked every 3, 4, and 6 hours, respectively. The milk productivity of the experimental groups of female camels was studied through monthly control milking, starting from the third month of lactation, over one year. The female camels were milked from three udder lobes, and the baby camels were allowed to suck on the fourth one.

### Management of Camels

Four groups of Bactrian camels were selected for the study, utilizing the analog principle. The feeding and keeping conditions for all groups of animals were the same. All camels were kept in standard condition, corresponding to the recommendations for animal care during the lactation period. Feeding was performed with balanced diets, considering the animals' needs for proteins, fats, carbohydrates, vitamins, and minerals to

ensure normal growth and milk production (Kalashnikov et al., 2003; Koptileuov et al., 2024).

### Parameters

Macro- and microelements in milk were analyzed, and the relationship between the milking method and these indicators was demonstrated. Milk Fat, protein, and lactose, were also measured.

Milk productivity of the dairy herd was studied based on controlling milk yield and determining fat content, protein content, and milk density using a Lactane-3 analyzer once a month (Shidlovskaya et al., 2003; Shidlovskaya, 2004).

### Statistical Analysis

Statistical analysis was performed using a one-way Anova in Minitab and Tukey's test was used afterwards.

## RESULTS

Table 1 presents the results of milk yield measurements in four groups, according to the experimental design. As shown in Table 1, the total milk productivity of group 1 significantly exceeds that of similar Bactrian camels with any other milking routine. The average milk productivity was 1,498.5L of milk, and the average daily milk yield was 5.5L. When milking camels with an interval of 2 hours, there was an increase in the amount of milk released, especially at the beginning of lactation, when physiological processes were actively restored. The greatest increase in milk production occurred during the peak phase of lactation. This milking routine, with an interval of 2 hours, proves to be the most effective for achieving high milk productivity, but requires careful monitoring of the animals' condition and ensuring their proper nutrition.

**Table 1:** Milk production (L) of camels among the various groups of Kazakh Bactrian camels

| Animal groups | Milk consumption | Milk sucked | Average milk productivity | Average daily milk yields |
|---------------|------------------|-------------|---------------------------|---------------------------|
| 1             | 474.6            | 1,023.9     | 1,498.5                   | 5.5                       |
| 2             | 458.6            | 976.0       | 1,434.6                   | 5.3                       |
| 3             | 433.9            | 925.0       | 1,358.9                   | 5.0                       |
| 4             | 435.0            | 905.0       | 1,340.0                   | 5.0                       |

In group 2, where milking was done every 3 hours, the average milk productivity was 1,434.6L and the average daily milk yield was 5.3L. This routine involves intensive stimulation of the mammary gland, which can contribute to increased milk production, especially during the initial lactation period. However, it is essential to consider that such a routine necessitates careful monitoring of the animals' condition, as frequent milking without proper nutrition and recovery can lead to stress and exhaustion.

In group 3, with a milking frequency of every 4 hours, the average milk productivity was 1,358.9L, and the average daily milk yield was 5.0L. This milking routine helps to maintain a stable level of milk production, providing an optimal balance between the mammary gland stimulation and time for the animal to recover.

In group 4, with a milking frequency of every 6 hours,

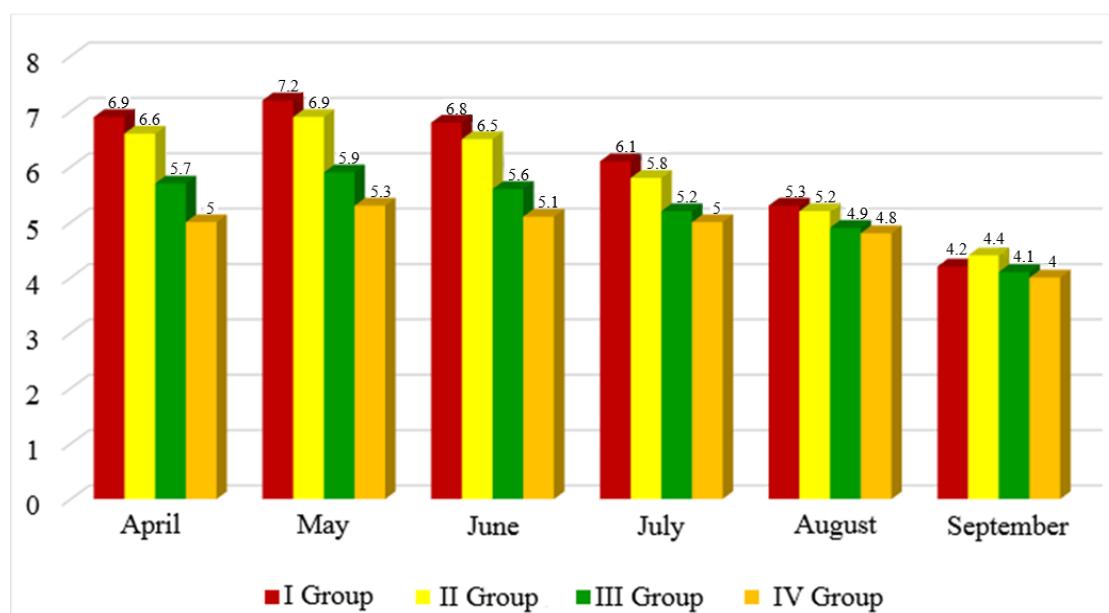
the average milk productivity was 1,340.0L, and the average daily milk yield was 5.0L. This less intense milking routine reduces the load on the camel's body. However, to maintain high milk productivity, it is essential to monitor the health of the animals and ensure their proper nutrition.

Thus, a comparative study has found that the optimal frequency of milking to achieve the highest milk productivity is an interval of 2 hours. This interval allows for the maximum total milk yield and maintains a high level of productivity, especially at the beginning of lactation. However, milking every 4 hours is also an effective and balanced approach for sustainable results and minimizing animal stress.

The milking frequency significantly affects milk yield dynamics during lactation, as it regulates the stimulation of the mammary gland. Increasing the interval between milking sessions can reduce overall milk productivity, while more frequent milking sessions increase it, especially in the early stages of lactation.

However, the optimal milking routine should be balanced, considering the animals' health and physiological needs. Fig. 2 shows the dynamics of the daily milk yield of Bactrian camels.

The maximum milk yield from camels in the Khanskaya Orda LLP is observed in the first three months of lactation. In group 1, the first three months of the lactation period account for 57.26% of the total milk yield for the entire lactation period. In group 2, this indicator is 56.49%, indicating a similar dynamic of milk production, but with a slight decrease compared to group 1. In group 3, the first three months of lactation account for 54.77% of the total milk yield, which is slightly lower, indicating less intensive productivity in the early stages of lactation. This indicator is 52.74% in group 4, marking the most significant decrease in milk yield during the first months of lactation compared to the other groups.


Such indicators suggest that the highest milk productivity occurs during the initial months of lactation, and as the interval between milking increases, there is a

corresponding decrease in milk yield. This may indicate that more frequent milking contributes to better preservation and increases milk production in the first months when physiological processes are established. The frequency of milking directly impacts the physiological state of camels. More frequent milking (for example, once every 2-3 hours) promotes better removal of milk from the mammary gland, which helps prevent lactostasis and stimulates milk production. However, an excessive milking frequency without proper nutrition and recovery can lead to stress, fatigue, and even exhaustion in the body, negatively impacting long-term milk productivity.

As our study demonstrated, the optimal milking routine is to milk every 3-4 hours. This routine strikes a good balance between stimulating milk productivity and allowing the camel sufficient time to recover. As a result, camels can maintain a high milk yield during the first months of lactation, effectively utilizing their milk production without overloading the animal. The results of our control milkings confirm the high milk productivity of Kazakh Bactrian camels bred on the farm. The camel milk under study is characterized by a high density, attributed to its high content of dry substances (Table 2). An analysis of the physicochemical and organoleptic properties of camel milk obtained at various milking intervals revealed that the frequency of milking significantly impacted its composition and quality.

In group 1, where milking was carried out every 2 hours, the milk had the lowest density of 1,029g/cm<sup>3</sup> and a fat content of 5.5%, which is attributed to insufficient time for milk fat accumulation. The acidity of milk in this group was the highest at 19.1°T, which may indicate increased mammary gland activity during frequent milking.

In group 2, where milking was performed every 3 hours, there was a slight increase in density (1,030g/cm<sup>3</sup>) and fat content (5.7%) compared with group 1. This is because, as the interval between milking increases, the mammary gland becomes more efficient at accumulating milk components.



**Fig. 2:** Dynamics of daily milk yield of camels during lactation.

**Table 2:** Organoleptic and physicochemical parameters of Bactrian camel milk

| Indicators                 | Group                              |                                    |                                     |                                   |
|----------------------------|------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|
|                            | Group 1                            | Group 2                            | Group 3                             | Group 4                           |
| Organoleptic studies       |                                    |                                    |                                     |                                   |
| Taste and smell            | Neutral, odorless                  | Neutral, odorless                  | Neutral, odorless                   | Neutral, odorless                 |
| Consistency                | Homogeneous, sediment-free, liquid | Homogeneous, sediment-free, liquid | Homogeneous, sediment-free, density | Homogeneous, sediment-free, thick |
| Color                      | White with a yellowish tinge       | White with a yellowish tinge       | White with a yellowish tinge        | White with a yellowish tinge      |
| Physicochemical study      |                                    |                                    |                                     |                                   |
| Acidity, °T                | 19.1                               | 18.5                               | 17.7                                | 17.3                              |
| Density, g/cm <sup>3</sup> | 1.029                              | 1.030                              | 1.031                               | 1.033                             |
| Fat, %                     | 5.5±0.23                           | 5.7±0.21                           | 5.82±0.21                           | 5.7±0.18                          |
| Protein, %                 | 3.8±0.32                           | 3.85±0.28                          | 3.86±0.32                           | 3.75±0.21                         |
| Sugar, %                   | 4.5±0.13                           | 4.6±0.11                           | 4.8±0.11                            | 4.7±0.09                          |
| Ash, %                     | 0.95±0.31                          | 0.93±0.22                          | 0.92±0.21                           | 0.91±0.13                         |
| Dry matter, %              | 14.5±0.29                          | 14.6±0.32                          | 14.78±0.36                          | 14.58±0.28                        |
| Ca                         | 0.22±0.15                          | 0.23±0.19                          | 0.24±0.18                           | 0.23±0.14                         |
| P                          | 0.09±0.05                          | 0.10±0.07                          | 0.10±0.09                           | 0.09±0.09                         |

In group 3, where milking took place every 4 hours, the milk was the fattiest, at 5.82%, and had an optimal density of 1,031g/cm<sup>3</sup>, indicating a better balance between the mammary gland stimulation and recovery time. The sugar content in the milk of this group was also the highest, 4.8%, which indicates a good ability of the mammary gland to produce carbohydrates.

In group 4, where milking was carried out every 6 hours, milk had the highest density of 1,033g/cm<sup>3</sup> and a fat content of 5.7%. However, there was a slight decrease in protein content, at 3.75%, compared to the other groups. This is due to the longer interval between milking, which promotes fat accumulation, but may limit protein synthesis. Thus, the optimal frequency for obtaining milk with the best physicochemical and organoleptic characteristics is milking every 4 hours, as it ensures a balanced content of fat, protein, and sugar and preserves the high quality of the milk.

## DISCUSSION

When analyzing milk productivity, it is essential to consider the impact of milking frequency on the quantity of milk and its qualitative characteristics (Boujenane, 2019). Important indicators of milk quality include the content of macro- and microelements, such as fat, protein, and lactose, directly related to the animal's physiological state, milking routine, and the impact of the milking routine on the mammary gland (Azwai et al., 2024; Khateeb et al., 2025).

The results on the effect of milking frequency on camel milk production are consistent with the work of other authors but also reveal some unique aspects that require a more in-depth analysis.

Our data indicates that the highest milk productivity is observed when milking occurs every 2-3 hours, particularly during the initial lactation period. These results have been confirmed in multiple studies (Baimukanov et al., 2023b). These studies indicate that regular and frequent milking stimulates the mammary gland, resulting in a higher milk yield during the early stages of lactation. Additionally, the work suggests that increasing the frequency of milking during active lactation improves total milk yield and enhances milk quality, a finding confirmed by our results for the group with a milking frequency of every 2-3 hours

(Baimukanov et al., 2017).

Berezkina et al. (2022) and Nokusheva et al. (2023) emphasized that excessive milking frequency without proper care and balanced feeding can lead to stress and exhaustion in animals, which reduces their productivity. Al-Fayad (2023) and Tharwat et al. (2024) also support findings of this study regarding the need to monitor the condition of animals with frequent milking, noting that a lack of time for mammary gland recovery can negatively impact total milk yield and milk quality.

However, at longer intervals (4-6 hours), there is a decrease in milk productivity, which is also consistent with the previous work (Baymukanov, 2002). They explained that an increase in the interval between milking can lead to a decrease in mammary gland stimulation and, as a result, total milk yield, which is confirmed by our data. Studies have shown that milk obtained with an interval of 4 hours exhibits higher physicochemical parameters, such as fat content and density, which is also confirmed by our results (Baimukanov et al., 2023a). Our results indicate that milk from the group with this interval yielded the best results in these characteristics (Bekenov et al., 2023).

One of the main indicators of milk quality is its density (Al-Sobayil et al., 2024; Butar-Butar et al., 2024). The dynamics of milk productivity observed during lactation in our study coincide with the results presented in many works (Gnezdilova et al., 2023), which indicate that the highest milk yield occurs in the first three months of lactation. A decrease in milk production in subsequent months is associated with a reduction in mammary gland stimulation resulting from an increase in the interval between milking sessions. Our data on high milk yield in the first three months (57.26% of the total) confirm this trend.

Thus, our results confirm many of the conclusions reached by other authors and emphasize the importance of adopting a balanced approach to organizing the milking routine, considering the animals' physiological state. Excessively frequent milking or excessively long intervals can negatively affect the productivity and health of animals, necessitating further research to optimize milking routines under various conditions.

## Conclusion

This research states that the interval of milking in the

Bactrian camel has a strong association with the quality and quantity of milk yield. Decrease in milking interval increases the quality of milk but the quantity is decreased. Optimum milking intervals lead to improved quality and quantity of milk. 4 hours milking interval is suitable for the optimum milk yield of animals.

## DECLARATIONS

**Funding:** This research hasn't received external funding.

**Acknowledgement:** The authors express their sincere gratitude to the Editor and anonymous reviewers for their valuable comments and constructive suggestions, which significantly improved the quality of this manuscript

**Conflict of Interest:** The authors declare no conflict of interest.

**Data Availability:** Data available on request from the corresponding author.

**Ethics Statement:** All experimental procedures involving animals were conducted in accordance with the international guidelines for the ethical use of animals in research and were approved by the Bioethics Committee of Zhangir Khan West Kazakhstan Agrarian and Technical University (Approval No. 03 on March 26, 2025). The animals were maintained and treated in compliance with the national regulations on animal welfare.

**Author's Contribution:** IZh, BK conceptualized the study and drafted the manuscript. FZ, AA and GK contributed to methodology and field survey design. SZh, MSh and BS performed laboratory analyses. BYe and DG assisted in data collection and validation. BS carried out statistical analysis and data interpretation. AA and GK provided technical support for molecular diagnostics. All authors critically revised the manuscript and approved the final version.

**Generative AI Statement:** The authors declare that no Gen AI/DeepSeek was used in the writing/creation of this manuscript.

**Publisher's Note:** All claims stated in this article are exclusively those of the authors and do not necessarily represent those of their affiliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated/assessed in this article or claimed by its manufacturer is not guaranteed or endorsed by the publisher/editors.

## REFERENCES

Abutalip, A., Suchshikh, V., Aitzhanov, B., Ospanov, Y., & Kanatov, B. (2024). Current state of animal anthrax problems in the Republic of Kazakhstan and ways to solve it. *International Journal of Veterinary Science*, 13(6), 922-930. <https://doi.org/10.47278/journal.ijvs/2024.198>

Aidarbayeva, D., Taldybay, A., & Bashenova, M. (2025). Beneficial flora of northwestern Zhetysu Alatau region, Kazakhstan. *SABRAO Journal of Breeding and Genetics*, 57(1), 171-182.

<https://doi.org/10.54910/sabraw2025.57.1.17>

Akhmetsadykova, S.H., Konuspayeva, G., & Akhmetadykov, N. (2022). Camel breeding in Kazakhstan and future perspectives. *Animal Frontiers: the Review Magazine of Animal Agriculture*, 12(4), 71-77. <https://doi.org/10.1093/af/vfac048>

Al-Fayad, M.A.J. (2023). Seasonal variation affects the quantity and composition of milk produced in water buffaloes: Case study in Shatrah city of Iraq. *Journal of Global Innovations in Agricultural Sciences*, 17(1), 23-26. <https://doi.org/10.22194/JGIAS/11.1048>

Alhassani, W.E. (2024). Camel milk: Nutritional composition, therapeutic properties, and benefits for human health. *Open veterinary Journal*, 14(12), 3164-3180. <https://doi.org/10.5455/OVJ.2024.v14.i12.2>

Al-Sobail, F. A., Alsupail, M. M., & Tharwat, M. (2024). Effect of pomegranate peel with/without autologous bone marrow on healing of acute cutaneous wounds in alloxan-induced diabetic rabbits. *Open Veterinary Journal*, 14(6), 1358-1369. <https://doi.org/10.5455/OVJ.2024.v14.i6.4>

Azawi, S.M., Lawila, A.F., Eshamah, H.L., Sherif, J.A., Farag, S.A., Naas, H.T., Garbaj, A.M., El Salabi, A.A., Gammoudi, F.T., & Eldaghayes, I.M. (2024). Antimicrobial susceptibility profile of Klebsiella pneumoniae isolated from some dairy products in Libya as a foodborne pathogen. *Veterinary World*, 17(5), 1168-1176. <https://doi.org/10.14202/vetworld.2024.1168-1176>

Bai, Y., & Zhao, D. (2015). The acid-base buffering properties of Alxa bactrian camel milk. *Small Ruminant Research*, 123(2-3), 287-292. <https://doi.org/10.1016/j.smallrumres.2014.10.011>

Baimukanov, D.A., Alikhanov, O.A., Mongush, S.D., Yuldashbayev, Y.A., & Demin V.A. (2023a). Genetic parameters for milk production of female camels of the Kazakhstan population. *Russian Agricultural Sciences*, 49(4), 435-440. <https://doi.org/10.3103/S1068367423040055>

Baimukanov, D.A., Bissembeav, A.T., Abylgazinova, A.T., & Nazarbekov, A.B. (2023b). Dynamics of maximum and lifelong dairy productivity of camels (*Camelus bactrianus*, *Camelus dromedarius*) in Kazakhstan. *Science and Education*, 3-2(72), 304-312.

Baimukanov, D., Akimbekov, A., Omarov, M., Ishan, K., Aubakirov, K., & Tlepov, A. (2017). Productive and biological features of *camelus bactrianus* – *Camelus dromedarius* in the conditions of Kazakhstan. *Anais da Academia Brasileira de Ciências*, 89(3), 2058-2073.

Bekenov, D.M., Yuldashbayev, Y.A., Kargayeva, M.T. & Baimukanov, A.D. (2023). Selective and genetic aspects of increasing dairy productivity of the Kazakh bactrian camels (*Camelus bactrianus*). *Online Journal of Biological Sciences*, 23(3), 372-379. <https://doi.org/10.3844/ojbsci.2023.372.379>

Berezkina, G.Y., Nazarova, K.P., Zakirova, R.R., Utkina, O.S., & Alyopova, E.L. (2022). Milk quality and its technological properties with intensive production technology. *International Journal of Ecosystems and Ecology Science*, 12(3), 325-332. <https://doi.org/10.31407/ijees12.340>

Bolaev, V.K. (2012). Razvedenie verblyudov v respublike Kalmykia [Camel breeding in the Republic of Kalmykia]. *Vestnik Instituta Kompleksnykh Issledovanii Aridnykh Territorii*, 1(24), 42-45.

Boujenane, I. (2019). Effects of milking frequency on milk production and composition of holstein cows during their first three lactations. *Iranian Journal of Applied Animal Science*, 9(1), 25-29.

Bozymov, K.K., Zakirova, F.B., Dnkeshev, A.K., & Zhubantaev, I.N. (2013). Aktualnost proizvodstva i pererabotki verblyuzhego moloka (shubata) v usloviyah Zapadnogo Kazakhstana [The relevance of production and processing of camel milk (shubat) in the conditions of Western Kazakhstan]. In Aktualnye problemy razvitiya agropromyshlennogo kompleksa Prikaspiskogo regiona: Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Current issues of development of the agro-industrial complex of the Caspian region: Proceedings of a research and practice conference] (pp. 8-10). Elista: Kalmyk State University.

Butar-Butar, M.J., Tambunan, I.Y.B., Siringo-Ringo, E., Febranti, R., & Gurning, K. (2024). Antioxidant potential, nutrition, and metabolomic analysis of the amino acid content of infant formula milk for 7-12 months and predicted benefits in Indonesia. *International Journal of Advancement in Life Sciences Research*, 7(4), 107-116. <https://doi.org/10.31632/ijalsr.2024.v07i04.010>

Doshanov, D.A., Baimukanov, D.A., Alikhanov, O., & Yuldashbaev, Y. (2013). Khozyaistvenno poleznye priznaki verblyudov novogo tipa Tupkaragan kazakhsikh odnogorbykh verblyudov nar [Economically useful features of camels of the new type Tupkaragan Kazakh one-humped hybrid camels]. *Glavnyi Zootehnik*, 7, 22-25.

Gnezdilova, L., Fedotov, S., Muradyan, Z., Rozinsky, S., & Gade, R.R. (2023). Effect of mycotoxins on reproduction and milk quality of dairy cattle and its amelioration by natural adaptogen "Betulin". *Qubahan Academic Journal*, 3(4), 400-408.

<https://doi.org/10.58429/qaj.v3n4a231>

Kalashnikov, A.P., Fisinin, V.I., Shcheglov, V.V., & Kleimenov, N.I. (2003). Normy i rationsy kormleniya selskokhozyaistvennykh zhivotnykh: Spravochnoe posobie [Standards and rations for feeding farm animals: A reference book]. Moscow, pp: 456.

Khateeb, S., Alrashidi, A., Albalawi, J., Alrwes, M., Aloraini, N., & Almudayni, M. (2025). Investigating the antioxidant and anti-cancer properties of milk thistle extract against the HepG2 cells. *Advancements in Life Sciences*, 12(1), 134-140.

Koptileuov, B., Tokhetova, L., Baizhanova, B., Bekzhanov, S., Nurgaliyev, N., & Demesinova, A. (2024). Alfalfa (*Medicago sativa* L.) haymaking timing effects on its yield and quality in Kyzylorda Region, Kazakhstan. *SABRAO Journal of Breeding and Genetics*, 56(1), 280-291. <https://doi.org/10.54910/sabrao2024.56.1.25>

Tanimoun, M.H., Ndour, A.P.N., Gagara, H., Akakpo, A.J., & Bada-Alamedji, R. (2021). Prevalence and risk behaviours of camel brucellosis transmission in the peri-urban dairy basin of Niamey, Niger. *International Journal of Biological and Chemical Sciences*, 15(2), 379-387. <https://doi.org/10.4314/ijbcs.v15i2.1>

Nazarova, P., Nazdrachev, Y., Zabolotskikh, V., & Mamykin, E. (2025). Efficiency of cultivation of spring triticale in traditional and organic farming in the arid climate of Northern Kazakhstan. *International Journal of Agriculture and Biosciences*, 14(1), 11-21.

<https://doi.org/10.47278/journal.ijab/2024.186>

Nokusheva, Z., Kantarbayeva, E., Issayeva, Z., Tokusheva, A., & Meldebekova, N. (2023). Enhancing milk productivity in dairy cows through the optimized utilization of oilseed byproducts. *International Journal of Design and Nature and Ecodynamics*, 18(3), 727-733. <https://doi.org/10.18280/ijdne.180326>

Shidlovskaya, V.P. (2003). Standarty, reglamentiruyushchie organolepticheskii analiz molochnoi produktii [Standards regulating organoleptic analysis of dairy products]. *Dairy Industry*, 8, 35-38.

Shidlovskaya, V.P. (2004). Organolepticheskie svoistva moloka i molochnykh produktov: Spravochnik [Organoleptic properties of milk and dairy products. A reference book]. Moscow: Koloss, 360 p.

Tariq, M., Badshah, F., Khan, N.U., Zafar, M.I., De los Ríos-Escalante, P.R., Ibáñez-Arancibia, E., Mehnaz, S., Mubashir, M., Khan, M.S., Khan, M.S., Rafiq, N., & Shaheen, N. (2024). Assessment of Babesia spp. prevalence in various domestic animals across Southern Punjab, Pakistan. *Brazilian Journal of Biology*, 84, e277636. <https://doi.org/10.1590/1519-6984.27763>

Tharwat, M., Alkhedhairi, S., Saadeldin, I.M., & Gomaa, N. (2024). Metabolic and hematological biomarkers alterations during the transition period in healthy farm animals: A review. *International Journal of Veterinary Science*, 13(6), 962-969. <https://doi.org/10.47278/journal.ijvs/2024.147>