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ABSTRACT

Article History

Signal Transducer and Activator of Transcription 1 (STAT1) is a crucial transcription factor in
interferon signaling pathways, playing a vital role in immune responses against viral,
bacterial, and parasitic infections. This study aimed to identify polymorphisms in the STAT1
gene among river buffalo populations in Indonesia to assess genetic diversity and its
potential for improving disease resistance and productivity. A total of 100 river buffaloes
from four regions (Lubuk Pakam, Pancur Batu, Sunggal, and Tapanuli Utara) were analyzed.
Genomic DNA was extracted from hair samples, and three SNPs (g.15856G>T, g.16211C>T,
and g.16252C>G) were genotyped using PCR and Sanger sequencing. Genetic parameters,
Hardy-Weinberg equilibrium (HWE),
Polymorphism Information Content (PIC), were calculated. Results revealed that SNP
g.16211C>T had the highest PIC value (0.302), indicating its usefulness as a genetic marker,
though it deviated from HWE, suggesting influences from selection or genetic drift. The
UPGMA dendrogram clustered Lubuk Pakam and Pancur Batu together, while Sunggal and
reflecting genetic
populations. Further research is needed to explore the functional implications of these

including allele frequency, heterozygosity,

Tapanuli Utara formed a separate group,

polymorphisms and their role in immune regulation.
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INTRODUCTION

Signal Transducer and Activator of Transcription 1
(STAT1) is a crucial transcription factor in the interferon
(IFN) signaling pathways, particularly mediating type | and
type Ill IFN responses (Stanifer et al., 2020; Tolomeo et al.,
2022). In livestock species, including the river buffalo
(Bubalus bubalis), STAT1 has garnered significant attention
due to its role in modulating immune defenses against
viral, bacterial, and parasitic infections (Zhang et al., 2025).
River buffalo, a key species for milk, meat, and draught
power in tropical and subtropical regions, are often
exposed to a range of infectious diseases that can severely
impact their productivity and economic value (Di Stasio &
Brugiapaglia, 2022; Saputra & Anggraeni, 2023).

River buffalo in Indonesia, based on microsatellite
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relationships among

analyses, exhibit low genetic diversity, appearing
monomorphic (Saputra et al, 2020). Recent genomic
studies employing single nucleotide polymorphism (SNP)
markers have consistently revealed low genetic diversity
within buffalo populations in Indonesia, Vietnam, and
China (Pauciullo et al., 2025). This limited genetic variability
poses challenges for breeding programs aimed at
improving traits such as disease resistance, productivity,
and adaptability. Identifying and characterizing key genes,
such as STAT1, which play a critical role in immune
responses, could provide valuable insights into the genetic
potential of Indonesian river buffalo populations. By
exploring polymorphisms in the STAT1 gene, this study
aims to uncover genetic markers that could serve as a
foundation for enhancing genetic diversity and improving
the overall quality of this economically important species.
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Recent studies have highlighted the importance of
STAT1 in the innate immune response, particularly its role
in interferon signaling, which is vital for antiviral defense
(Jung et al., 2020; Li et al., 2023; Metwally et al., 2024). In
cattle, a closely related species, polymorphisms in STAT1
have been associated with resistance to diseases such as
bovine tuberculosis and mastitis (Khan et al., 2020). These
findings suggest that STAT1 could serve as a valuable
genetic marker for selective breeding programs aimed at
improving disease resilience in livestock. However, despite
its potential, research on STAT1 in river buffalo remains
limited, with few studies exploring its genetic variability,
expression patterns, and functional implications in this
species (Sharma et al,, 2024). The primary objective of this
study was to identify polymorphisms in the STAT1 gene
among river buffaloes in Indonesia.

MATERIALS & METHODS

Samples

A total of 100 river buffaloes were included in this
study, comprising 40 individuals from Lubuk Pakam, 22
from Pancur Batu, 16 from Sunggal, and 22 from Tapanuli
Utara. Hair samples were collected from each animal, and
genomic DNA was extracted using the Tissue/Blood DNA
Mini Kit (Geneaid, Taiwan) following the manufacturer’s
protocol.

PCR Amplification

A PCR premix was prepared with a total reaction
volume of 15pL, consisting of 0.5 uL DNA template, 0.5 pL
of each primer (10nM), 0.5 reaction volume of GoTaq®
Green Master Mix (Promega, USA), and nuclease-free
water to adjust the final volume. Amplification was
performed using a SimpliAmp  Thermal  Cycler
(ThermoFisher, USA) under the following conditions: initial
denaturation at 95°C for 5min, followed by 35 cycles of
denaturation at 95°C for 10 seconds, annealing at 61°C for
30s, and extension at 72°C for 30 seconds, with a final
extension at 72°C for 5 minutes. The PCR products were
then visualized on a 1% agarose gel stained with ethidium
bromide and examined under UV light to confirm
successful amplification. Genotyping was conducted using
the Sanger sequencing method, performed by Macrogen
(South Korea). The sequencing results were analyzed to
identify specific polymorphisms within the STAT1 gene.

Statistical Analysis

Observed and expected heterozygosity, Hardy-
Weinberg equilibrium and Polymorphism Information
Content (PIC), were calculated using the Cervus software
(version 3.0.7) (Kalinowski et al, 2007) Genotype
frequency, Allele frequency, and UPGMA dendogram
were analyzed using the POPGENE software (version 1.32)
(Yeh & Boyle, 1997).

RESULTS AND DISCUSSION

The STAT1 gene in buffalo is structurally conserved,
located on chromosome 2, spanning 40,612 base pairs and
comprising 25 exons. This organization mirrors that found
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in other mammalian species such as cattle (Bos taurus) and
humans (Homo sapiens), reflecting the gene’s evolutionary
conservation and critical role in immune function. STAT1 is
a key component of the JAK-STAT signaling pathway,
which is essential for interferon-mediated immune
responses and host defense against pathogens (Das et al,,
2024). The gene encodes a 748-amino acid protein in
Murrah buffalo, a length comparable to that observed in
other livestock species, reinforcing the functional
conservation of STAT1 across mammals (Deng et al., 2015).

The identification of mutations in intronic regions of
the STAT1 gene, specifically at positions 15,856 (Intron 9),
16,211 (Intron 10), and 16,252 (Intron 10). Although introns
are non-coding sequences, they play critical roles in gene
expression, including the regulation of mRNA splicing,
stability, and transcriptional efficiency (Shi et al., 2020;
Haddad-Mashadrizeh et al., 2024). Mutations in intronic
regions can affect these processes, potentially altering the
function or expression levels of the gene (Li et al., 2025).

The absence of the GG genotype at g.16252C>G in
the Pancur Batu population and the CG genotype in the
Lubuk Pakam, Sunggal, and Tapanuli Utara populations
suggests limited genetic variability at this locus in these
buffalo populations (Table 1). This could be attributed to
genetic drift, selection pressures, or the founder effect,
which are common in isolated or small populations
(Judson et al., 2024; Marfurt et al.,, 2024). The dominance of
the G allele at g.15856G>T and the C allele at g.16211C>T
and g.16252C>G across all populations indicates a
potential selective advantage or neutral fixation of these
alleles. Such patterns of allele distribution are often
observed in populations under similar environmental or
disease pressures, where certain alleles may confer a
survival or reproductive advantage (Lockwood et al.,, 2024).

The observed genetic patterns highlight the
importance of understanding population-specific genetic
diversity for effective breeding and conservation strategies.
The absence of certain genotypes in specific populations
underscores the need to maintain genetic diversity to
prevent inbreeding and preserve adaptive potential (White
et al, 2025). Additionally, these findings provide a
foundation for future research on the association between
STAT1 polymorphisms and disease resistance in buffalo
populations, which could inform selective breeding
programs aimed at improving livestock health and
productivity (Zhu et al., 2025).

The identification of multiple alleles at SNPs
g.15856G>T, g.16211C>T, and g.16252C>G highlights the
genetic diversity present in the STAT1 gene among the
studied buffalo populations (Table 2). SNPs are the most
common form of genetic variation and are widely used as
molecular markers in genetic studies due to their
abundance and stability across generations (Tian et al,
2024). The presence of alleles A and T at g.15856G>T, C
and T at g.16211C>T, and C and G at g.16252C>G
suggests that these loci are polymorphic, which is a key
characteristic of SNPs. The presence of these SNPs in the
buffalo population provides valuable insights into the
genetic architecture of STAT1 and its potential role in
disease resistance and immune regulation.
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Table 1: Genotype frequency of three SNPs in STAT1 gene

Location g.15856G>T g9.16211C>T 9.16252C>G

GG T CcC cT T CcC CG GG
Lubuk Pakam (n=40) 0.92 0.08 0.70 0.12 0.18 0.97 0 0.03
Pancur Batu (n=22) 0.95 0.05 0.68 0.23 0.09 0.85 0.15 0
Sunggal (n=16) 0.87 0.13 0.56 0.25 0.19 0.87 0 0.13
Tapanuli Utara (n=22) 0.86 0.14 0.45 0.41 0.14 0.95 0 0.05
Overall (n=100) 0.91 0.09 0.62 0.23 0.15 0.93 0.03 0.04
Table 2: Alelle frequency of three SNPs in STAT1 gene
Location g.15856G>T g.16211C>T g.16252C>G

G T C T C G

Lubuk Pakam (n=40) 0.93 0.07 0.76 0.24 0.93 0.02
Pancur Batu (n=22) 0.95 0.05 0.80 0.20 0.80 0.20
Sunggal (n=16) 0.88 0.12 0.69 0.31 0.88 0.12
Tapanuli Utara (n=22) 0.86 0.14 0.66 0.34 0.95 0.05
Overall 0.91 0.09 0.74 0.26 0.95 0.05

Table 3: Heterozygosity, hardy-weinberg, and PIC

SNP Observed Heterozygosity Expected Heterozygosity Hardy-Weinberg Polymorphism Information Content
9.15856G>T 0.0000 0.1646 nd 0.150
g.16211C>T 0.2300 0.3915 hx 0.302
9.16252C>G 0.0300 0.3915 nd 0.099

Understanding the distribution and frequency of these
alleles can aid in the development of marker-assisted
selection (MAS) strategies to improve traits such as disease
resistance and productivity in buffalo populations (Mou et

suggesting a closer genetic relationship. Similarly, Sunggal
and Tapanuli Utara exhibit genetic closeness, forming a
separate cluster.
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programs aimed at maintaining healthy and resilient
populations (Kichamu et al., 2025).

The higher PIC value of SNP g.16211C>T (0.302)
compared to SNPs g.15856G>T and g.16252C>G suggests
that this locus has a greater degree of informativeness for
genetic diversity studies (Table 3). PIC values are a measure
of the usefulness of a marker for detecting polymorphism,
with values above 0.25 generally considered moderately
informative (Botstein et al.,, 1980). This makes g.16211C>T
a valuable marker for evaluating genetic variation and
population structure in river buffalo populations. However,
the deviation from Hardy-Weinberg equilibrium (HWE) at
g.16211C>T raises important considerations for its use in
association studies. HWE is a fundamental principle in
population genetics, and deviations from equilibrium can
arise due to factors such as selection, genetic drift,
migration, or non-random mating (Neamatzadeh et al,
2024). Markers not in HWE may introduce bias in
association analyses, as they do not reflect the expected
distribution of genotypes under random mating conditions
(Graffelman et al., 2013). Therefore, while g.16211C>T is
informative for genetic diversity, its deviation from HWE
limits its suitability for phenotype association studies
unless the underlying causes of the deviation are
understood and accounted for. For future studies, it is
recommended to identify additional markers in HWE that
can complement g.16211C>T in association analyses.

The UPGMA dendrogram revealed two distinct
clusters: the first cluster comprised individuals from Lubuk
Pakam and Pancur Batu, while the second cluster included
individuals from Sunggal and Tapanuli Utara (Fig. 1). This
clustering pattern indicates that the genetic distance
between Lubuk Pakam and Pancur Batu is relatively small,

Fig. 1: UPGMA based on STAT1 with Three SNPs.

Conclusion

This study identified and characterized
polymorphisms in the STAT1 gene among river buffalo
populations in Indonesia, revealing significant insights
into their genetic diversity and population structure. The
analysis of three SNPs (g.15856G>T, g.16211C>T, and
g.16252C>G)  demonstrated  varying levels  of
polymorphism, with SNP g.16211C>T exhibiting the
highest Polymorphism Information Content (PIC) value
(0.302), making it a valuable marker for assessing genetic
diversity. However, its deviation from Hardy-Weinberg
equilibrium (HWE) suggests potential influences from
selection, genetic drift, or non-random mating, which
may limit its utility in association studies without further
investigation.
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