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ABSTRACT Article History
Sustainable livestock production requires reducing enteric methane emissions. Enhancing | Article # 25-483
rumen fermentation through dietary supplements is a promising strategy to achieve this goal. | Received: 20-Aug-25
Therefore, this study investigated the effect of fossil shell flour (FSF) diets supplemented with | Revised: 07-Oct-25
varying inclusion levels of baobab oil seed cake (BOSC) on the rumen environment and enteric | Accepted: 15-Oct-25
methane emissions of Dohne Merino wethers. Twenty-four, five-month-old wethers (weighted | Online First: 10-Dec-25
25+0.5kg) were kept in individual pens for 90 days of successive feeding. The wethers were
randomly allocated to four dietary treatments in a completely randomised design, with each
treatment consisting of six animals. Fossil shell flour was included in all diets at 4% and
baobab oil seed cake at incremental levels of 0%, 5%, 10%, and 15%. Rumen environment
(rumen pH, temperature (°C), ammonia concentration (mg/dL), total volatile fatty acids (TVFA),
acetate, propionate, butyrate, valerate, isobutyrate, isovalerate, and acetate: propionate ratio)
and enteric methane emissions (ppm-m, g/day, L/day, g/kg DMI) were determined. Wethers
fed 10% BOSC had the highest TVFA, acetate, propionate, butyrate, isobutyrate, and
isovalerate concentration and the lowest A:P ratio.

Baobab oil seed cake supplementation did not significantly affect the rumen pH,
temperature, ammonia, and VFA concentration (P>0.05). Enteric methane output was highest
in wethers fed 0% BOSC during feeding and resting (P<0.05). Enteric methane output
decreased with increasing BOSC supplementation level across all activities. It can be concluded
that diets with 4% FSF supplemented with 10% BOSC maintain the rumen environment for
fermentation and reduce enteric methane emission in Dohne Merino wethers, thereby
promoting sustainable agriculture.

Keywords: Rumen environment; Enteric methane emissions; Baobab oil seedcake; Fossil shell
flour; Dohne Merino.

INTRODUCTION gross energy has been lost at the maintenance level of
intake and 6% when feed intake increases (Lakamp et al,
Ruminants account for approximately 39% of animal 2022; Parnian-Khajehdizaj et al., 2023). Studies have shown

methane production and 13% of global methane emissions that sheep produce methane ranging from 20 — 55L/day.
(Gere et al,, 2022). Methane has a global warming potential ~ According to Flores-Santiago et al. (2022), sheep can
23 times greater than carbon dioxide in a 100-year horizon produce 10 — 16kg of methane per head annually.
(Jafari et al., 2020; Flores-Santiago et al., 2022). Therefore, Methane production contributes to environmental
methane is a significant contributor to climate change. pollution and affects energy utilization in sheep. Methane
Methane production signifies that approximately 8% of the ~ is produced during rumen fermentation, a process that
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produces energy from volatile fatty acids (acetate,
propionate, and butyrate) together with ammonia and
carbon dioxide (Lavendahl et al, 2018). Methane is
eliminated through eructation (Getabalew et al, 2019).
Enteric methane emission is affected by several factors,
including the quantity of feed consumed, the composition
of the diet (forage-to-concentrate ratio), and the animal's
physiological state (Van Gastelen et al., 2019). Therefore, it
is imperative to modify rumen fermentation and decrease
enteric methane emissions in sheep. Among other
strategies, diet manipulation has been shown to alter
rumen fermentation and reduce enteric methane
production (Tseten et al., 2022).

One effective method is supplementing diets with
feed additives and protein-rich ingredients. This improves
microbial growth efficiency, which alters rumen
fermentation and reduces enteric methane output in
animals (Getabalew et al, 2019; El-Obied et al., 2024).
Utilizing agro-industrial by-products such as baobab oil
seed cake (BOSC) is essential in livestock production
(Chisoro et al., 2018; Ayssiwede et al., 2023). Baobab oil
seedcake contains considerable amounts of nutrients,
including proteins (20-36% CP), energy, vitamins, minerals,
and amino acids, especially lysine and methionine, which
are not available in most cereal grains (Chisoro et al., 2019;
Nkosi et al, 2019; Babalola et al, 2021). The protein
content of BOSC may increase propionate production
while decreasing the availability of hydrogen ions for
methane production (Saho et al., 2020). Baobab oil seed
cake also contains 2-12% tannin, 2% phytate, and 10%
oxalate concentration (Ujor et al.,, 2020). A study by Saho et
al. (2020), showed reduced enteric methane emission with
increasing levels of baobab oil seed cake in goats. Puchala
et al. (2005) and Nawab et al. (2020), showed that forage
that contains condensed tannins can potentially minimize
enteric methane emission in ruminants. This could be due
to the presence of tannins, which alter microbial
fermentation in the rumen by reducing protein
fermentation, thereby preventing methanogenesis.

On the other hand, lkusika et al. (2019), supplemented
sheep diets with fossil shell flour (FSF), an organic feed
additive with physical and chemical characteristics that
make it suitable for use in livestock feeds. Fossil shell flour
is a mineral-rich feed ingredient made from fossilized
remains of diatoms and can be found in many countries
(Isabirye et al., 2020; lkusika & Mpendulo, 2023), including
South Africa. Belanger (2015) reported a significant
decrease in enteric methane emission in diets with 75g/L
and 100g/L of fossil shell flour. This was attributed to
reduced hydrogen ions, which altered methane
production. However, Ikusika & Mpendulo (2023), reported
increasing methane output with increasing fossil shell flour
inclusion in sheep diets. The variability in the FSF impact
could be attributed to variations in diet composition,
specifically the proportion of other feed ingredients,
varying inclusion levels, and the duration of the feeding
trial.

As a result, based on the available literature where
fossil shell flour and baobab oil seed cake were included
individually in livestock diets to determine their effect,
combining them may produce a positive outcome due to

637

Int J Agri Biosci, 2026, 15(2): 636-645.

their chemical, physical, and nutritional composition. There
is little or no literature available where fossil shell flour and
baobab oil seed cake were incorporated together in diets
and to determine their influence on the rumen
environment and enteric methane emissions. These feed
resources can complement each other by altering the
rumen environment and reducing enteric methane
emissions, promoting sustainable agriculture. Therefore,
the current research determined the effect of fossil shell
flour diets supplemented with varying inclusion levels of
baobab oil seed cake on the rumen environment and
enteric methane emissions in Dohne Merino wethers. It
was hypothesized that FSF and BOSC could have a
synergistic effect by improving the stability and efficiency
of the rumen environment and reducing enteric methane
emissions in Dohne Merino wethers.

MATERIALS & METHODS

Study Site

The experiment was conducted at Fort Cox Agriculture
and Forestry Training Institute in Middledrift, Eastern Cape,
South Africa. The college lies along 580 m above sea level
and has a latitude and longitude of 27.03' N and 32.45' E,
respectively. The farm is located at about 34km from the
University of Fort Hare, Alice (Akuru et al., 2021). The area
receives around 500-600mm of rainfall, which falls mainly
during the summer season, with a mean temperature of
22.9°C (Gajana et al., 2011).

Animals, Experimental Design, and Management

Twenty-four (power analysis), five-month-old Dohne
Merino wethers (weighted 25+0.5kg) were used in this
study as they are a dual-purpose breed well adapted to
South Africa’s harsh conditions and contribute significantly
to the livestock industry (Dzomba et al., 2021). The wethers
were purchased from a commercial farm in Eastern Cape
Province, South Africa, and were used for the study in a
completely Randomized Design. On arrival, all animals
were allocated randomly to four treatments; hence, there
were six animals per treatment. The wethers were confined
individually in well-ventilated pens (1.5x1m) with concrete
floors. The wethers were allowed to adapt to the feed and
environmental conditions for 7 days. The feeding trial
lasted for 90 days, without considering the 7 days for the
adaptation period. For easy identification, the wethers
were ear-tagged. Clean, fresh water was made available to
the wethers ad libitum daily, and they were fed twice a day
at 8:00hrs and 16:00hrs at 5% of their body weight.

Experimental Diets

Table 1 shows the inclusion levels of feed ingredients
in the experimental diets. Fossil shell flour was included in
all experimental diets at a 4% level; this is the
recommended level for optimum performance, based on
previous research studies (lkusika et al., 2019; lkusika et al.,
2020; Mwanda et al., 2020). Treatment 1 had 0% BOSC,
treatment 2 had 5% BOSC, and treatments 3 and 4 had
10% and 15% BOSC, respectively; the levels were chosen
based on nutritional requirements, previous research, and
cost-effectiveness. Fossil shell flour (Food - Grade) was



bought from Eco-Earth (Pty) Ltd. in Port Elizabeth. Baobab
oil seed cake was purchased from Eco Products in Louis
Trichard, Limpopo province, South Africa. Concentrate
ingredients were purchased from Umtiza Agricultural
Products, and lucerne from a farm in Queenstown, South
Africa. The dietary nutritional requirements of the animals
were considered during feed formulation. Experimental
diets (as fed) are shown in Table 2.

Table 1: Experimental diets fed to animals

Ingredients (%) Dietary Treatments

0% BOSC 5% BOSC 10% BOSC 15% BOSC

Maize 5 5 5 5
Soybean Meal 15 10 5 0
Wheat bran 15 15 15 15
Leucine 60 60 60 60
Molasses 5 5 5 5
Mono-dicalcium phosphate 0.5 0.5 0.5 0.5
Sheep premix 0.25 0.25 0.25 0.25
Salt 0.25 0.25 0.25 0.25
Fossil shell flour 4 4 4 4
Limestone 15 15 1.5 1.5
Chemical composition

DM 88.96 88.72 88.73 88.83
oM 79.68 79.88 79.95 79.52
CcP 13.34 12.91 12.67 11.57
CF 26.25 27.05 26.92 28.99
EE 1.79 1.82 2.04 1.98
ADF 17.47 21.34 31.08 41.70
NDF 39.11 51.09 51.22 59.10
Nitrogen 213 2.07 2.03 1.85
Starch 10.68 10.02 10.62 9.79

BOSC = baobab oil seed cake, DM = dry matter, OM = organic matter, CP =
crude protein, CF = crude fiber, EE = ether extract, ADF = acid detergent
fiber, NDF = neutral detergent fiber.

Table 2: Proximate composition of baobab oil seedcake

Nutrient (% Baobab oil seed cake (%)

DM 90.5
Moisture 9.53
oM 83.8
CP 253
CF 129
EE 5.92
NDF 43.5
ADF 25.2
Total N 4.05
Starch 16.4
Phosphorus (%) 0.07
Calcium (%) 0.79
Magnesium (%) 0.41
Potassium (%) 0.76
Sodium (mg/kg) 8
Copper (mg/kg) 12
Iron (mg/kg) 65
Manganese (mg/kg) 7

DM = dry matter, OM = organic matter, CP = crude protein, CF = crude
fibre, EE = ether extract, ADF = acid detergent fibre, NDF = neutral
detergent fibre, N = nitrogen, mg/kg = milligrams per kilogram.

Proximate Analysis of Experimental Diets and Baobab
Oil Seedcake

Proximate analysis was done to determine the
chemical composition of experimental diets and baobab
oil seed cake, as shown in Table 1 and 2. The dry matter
(DM) was determined by drying the samples for 24hrs. at
105°C in an air-forced oven, according to the Association
of Analytical Chemists methods (AOAC, 2005). A muffle
furnace was used to measure the ash content of the
samples at 550°C for 5 hrs. According to the AOAC (2005)
method 938.08. The difference between the DM and the
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ash content of the samples was regarded as organic matter
(OM) (Al-mentafji, 2006; Nurfeta, 2010). Ether extract (EE)
was determined using the Soxhlet extraction method with
dimethyl ether (method 920.85) (AOAC, 2005). Crude fibre
(CF) was determined by boiling samples in 1.25% dilute
H,SO4, washing with water, further boiling in NaOH, and
drying the samples at 65°C for 3 hours (AOAC, 2005).

The Kjeldahl method was used to determine the
nitrogen (N) content of the samples, and the crude protein
(CP) content was calculated by multiplying the N content
in the samples by 6.25 (Orlandi et al., 2020). The neutral
detergent fiber (NDF) was determined by using sodium
sulfite and a heat-stable a-amylase and acid detergent
fiber (ADF), according to the methods described by Van
Soest et al. (1991).

Measurement Parameters
The Rumen Environment

Twelve animals were chosen randomly, three per
treatment, to collect rumen fluid. The animals were
slaughtered at the East London abattoir at the end of the
feeding trial, and 200ml of rumen fluid was taken from
each animal (Wanapat et al., 2014). A digital pH meter
(H18424, Singapore) was used to determine the pH
immediately after collecting the rumen fluid (Abdel-
Raheem and Hassan, 2021). Temperature (°C) was
measured immediately by a digital thermometer from each
rumen fluid sample. Rumen fluid from each animal was
filtered through four layers of cheesecloth and 40mL of the
samples were mixed with H,SO and stored at -20°C for
VFA (Acetate, butyrate, propionate, valerate, isovalerate,
isobutyrate) analysis (Grimsell, 2020). Rumen fluid samples
(40mL) collected per animal were mixed with 1 ml of HCI
6N and stored at -20°C for ammonia analysis (Reis et al,
2016). The VFA concentration was determined by gas
chromatography as described by El-Essawy et al. (2021),
and the ammonia concentration was determined by
colorimetry as described by Broderick and Kang (1980) and
Zhang et al. (2017).

Enteric Methane Emission

A Laser Methane Detector (LMD) (LMm-g®; Tokyo
Gas Engineering Solutions, Ltd) (Roessler & Schlecht, 2021)
was used to measure the amount of methane produced.
The measurements were taken at different activities when
the animals were feeding, resting, and standing weekly
from the start of the experimental trial and daily in the last
week. The measurements were taken at a 1.5m distance
from the animal to avoid disturbing the animals and
interfering with the activity of wethers. The laser beam of
the hand-held LMD machine was aimed at the nostrils of
the wethers. The machine was reset before taking
measurements for each day to adjust it to ppm-m (parts
per million-meter) (Saho et al., 2020). The offset function of
the laser methane detector was used to discount the
atmospheric methane effect before the machine recorded
methane concentration from the animals. Multiple
measurements were taken from the same distance at
approximately the same time of day to ensure precision
(Chagunda & Yan, 2011). The methane concentrations



were measured in ppm-m for the weekly measurements,
and the daily values were converted to g/day using a
formula by Chagunda et al. (2009). Enteric methane
emission was also determined based on the dry matter
intake of the animals in g/kg dry matter intake (DMI) and
litres/day using formulas by Shibata et al. (1993) as
described by Ikusika and Mpendulo (2023).

Statistical Analysis

Recorded data on rumen pH, temperature, ammonia,
volatile fatty acids, and enteric methane emissions were
analysed using the Generalised Linear Model (GLM)
procedure of SAS (2010) (version 9.0). Data were presented
as Least Square Means (LSMs) with respective Standard
Error of the Means (SEMs). Differences amongst least
square means were tested using the probability of
difference (PDIFF) option of SAS (2010) and were
considered significant at P<0.05.
The statistical model used is as follows:

Yik = p + Ai + Pj + (A x P)j + &;; where,

Yijx = response variable (rumen
parameters, enteric methane emissions)

p = overall mean

A; = effects of diet

P; = period effect

(A x Pj = Interaction of diet and period effect.

&jk = Random error. Fori=1,2,3,4;j=1,2,3,4..

environment

RESULTS

The Rumen Environment

The effect of fossil shell flour diets supplemented with
varying inclusion levels of baobab oil seed cake on rumen
pH, temperature, ammonia and volatile fatty acids in
Dohne Merino wethers is shown in Table 3. Rumen pH was
lowest in Dohne Merino wethers fed 5% BOSC and highest
fed 0% BOSC (P>0.05). Rumen temperature (°C) was
highest in wethers in wethers fed 5% and 15% BOSC
(P>0.05). Dohne Merino wethers fed 10% BOSC had the
highest ammonia (mg/L) (P>0.05). Total volatile fatty acids
were highest in wethers fed 10% BOSC (P>0.05). Acetate,
propionate, butyrate, isobutyrate, and isovalerate
production were highest in wethers fed 10% BOSC
(P>0.05). Dohne Merino wethers fed 0% BOSC had the
highest valerate production (P>0.05). A:P ratio was highest
in Dohne Merino wethers fed 15% BOSC (P<0.05). The
rumen pH, temperature, ammonia, and volatile fatty acid
concentration were not significantly affected (P>0.05) by
BOSC inclusion in Dohne Merino wethers (Table 3).

Enteric Methane Emissions

Table 4 shows enteric methane emissions of Dohne
Merino wethers fed fossil shell flour diets supplemented
with baobab oil seed cake during different activities
(feeding, standing, and resting). Enteric methane output
(ppm-m) during feeding was highest in wethers fed 0%
BOSC (P<0.05). Methane produced (ppm-m) during resting
was highest in wethers fed 5% BOSC and 0% BOSC
(P<0.05). Enteric methane output (ppm-m) decreased as
the BOSC inclusion level increased during resting and
standing. Enteric methane output (ppm) was highest in
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wethers during resting than during feeding and standing
(P<0.05). Fig. 1 shows enteric methane output (ppm-m) by
Dohne Merino wethers over 9 weeks during different
activities. Overall methane output during standing,
feeding, and resting constantly decreased across all weeks
except in week 5 during feeding and week 6 during
standing and resting. Dohne Merino wethers fed fossil
shell flour diets supplemented with varying inclusion levels
of baobab oil seed cake produced the highest methane
values during week 1 and the lowest methane during week
9 across all activities (P<0.05).

Table 3: Rumen environment parameters of Dohne Merino wethers fed
diets with fossil shell flour supplemented with varying baobab oil seedcake
inclusion levels

Parameter "Treatment 2SEM  P-value
0% 5% 10% 15%
Rumen pH 6.76 6.62 6.70 6.67 0.08 0.688
Temp (°C) 30.7 317 313 317 062 0.643
Ammonia (mg/dL) 7.55 8.72 10.2  7.63 2.29 0.828
Total VFA 69.7 57.8 76,5 563 242 0.919
Acetate 51.7 432 553 427 18.6 0.949
Propionate 104 8.04 12.3 7.87 3.40 0.766
Isobutyrate 1.60 1.07 1.78 099 048 0.584
Butyrate 4.07 4.06 499 346 1.31 0.870
Isovalerate 0.98 0.69 1.19  0.61 0.27 0.449
Valerate 0.99 0.73 093 068 034 0.898
A:P ratio 5.05% 544% 4252 560° 037 0.115

b Means in the same row with different superscripts are significantly
different (P<0.05). 'Treatments: 0% = diet containing 4% FSF, 0% BOSC, and
15% Soybean meal; 5% = diet containing 4% FSF, 5% BOSC, and 10%
soybean meal; 10% = diet containing 4% FSF, 10% BOSC and 5% soybean
meal, 15% = diet containing 4% FSF, 5% BOSC and 0% soybean meal. Total
VFA (Total Volatile fatty acids) = Acetate + propionate + valerate + butyrate
+ isovalerate + isobutyrate. 2SEM = standard error of the mean.

Table 4: Enteric methane emissions (ppm-m) of Dohne Merino wethers fed
fossil shell flour diets supplemented with varying inclusion levels of baobab
oil seed cake during different activities

Activity Treatments 2SEM P-value

0% 5% 10%  15% T W TxW

Feeding 257 23.5% 222* 226* 114 0.138 <0.0001" 0.156
Standing 25.1 249 215 215 156 0268 <0.0001" 0.838
Resting ~ 40.4° 413P 3257 322 234 0.006" <0.0001" 0.045

b Means in the same row with different superscripts are significantly
different (P<0.05). 'P<0.05; “P<0.01. 'Treatments: 0% = diet containing 4%
FSF, 0% BOSC, and 15% Soybean meal; 5% = diet containing 4% FSF, 5%
BOSC, and 10% soybean meal; 10% = diet containing 4% FSF, 10% BOSC
and 5% soybean meal, 15% = diet containing 4% FSF, 5% BOSC and 0%
soybean meal. T = Dietary treatment effect, W = Week effect, TxW =
interaction between treatment and week. °SEM = standard error of the
mean.

Enteric methane was also measured in g/day during
different activities, as shown in Table 5 Dohne Merino
wethers fed fossil shell flour diets supplemented with
varying inclusion levels of baobab oil seed cake produced
the highest methane while resting than feeding and
standing. Enteric methane output was highest in wethers
fed 0% BOSC during feeding and resting (P<0.05).
Increasing supplementation levels of BOSC decreased
enteric methane output when the wethers were standing,
with wethers fed 0% BOSC having the highest methane
output (P>0.05). Table 5 shows that the dry matter intake
was highest in wethers fed 15% and 10% BOSC (P<0.05).
Enteric methane output in L/day and g/kg DMI was
highest in wethers fed 15 and 10% BOSC (P<0.05). Enteric
methane output increased with increasing DMI in Dohne
Merino wethers.
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Table 5: Enteric methane emissions of Dohne Merino wethers fed fossil shell flour diets supplemented varying inclusion levels of baobab oil seedcake

"Parameter Treatments 3SEM P-value

0% 5% 10% 15% T D TxD
DMI (kg/day) 1.20° 1.112 1.192b 1.21° 27.77 0.048" 0.583 0.992
Methane (L/day) 3220 29.32 31.7% 32,40 0.85 0.048" 0.583 0.992
Methane (g/kg DMI) 22.6° 20.82 22.3%0 22.7° 0.52 0.048" 0.584 0.992
Methane (g/day)
Feeding 0.62° 0.48° 0.43° 0.50° 0.04 0.004" 0.003" 0.067
Standing 0.63° 0.55% 0.522b 0.49° 0.04 0.122 0.066 0.347
Resting 1.290 1.16%° 0.97° 0.99° 0.08 0.013" 0.056 0.006™

2b Means in the same row with different superscripts are significantly different (P<0.05). 'Treatments: 0% = diet containing 4% FSF, 0% BOSC, and 15%
Soybean meal; 5% = diet containing 4% FSF, 5% BOSC, and 10% soybean meal; 10% = diet containing 4% FSF, 10% BOSC and 5% soybean meal, 15% = diet
containing 4% FSF, 5% BOSC and 0% soybean meal. DMI = dry matter intake, kg/day = kilograms per day, L/day = litres per day, g/kg = grams per kilogram,
g/day = grams per day. T = Dietary treatment effect, D = Day effect, TxD = interaction between treatment and day. °SEM = standard error of the mean.
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Fig. 1: Enteric methane emissions of Dohne Merino wethers fed diets with fossil shell flour supplemented with varying inclusion levels of BOSC over 9 weeks.

Table 6: Relationships between baobab oil seed cake inclusion and weeks of feeding on enteric methane emissions of Dohne Merino wethers during different
activities

Activity Week Diets SEM R? P-value
0% 5% 10% 15% Diet Linear Quadratic
Feeding 1 44.0 40.7 39.0 43.7 3.51 0.7077 0.8617 0.2597
2 313 253 38.0 353 412 0.2279 0.2650 0.7278
3 16.0 24.3° 14.7° 16.3% 2.87 0.1497 0.5912 0.3682
4 17.0 17.7 18.0 15.7 2.61 0.9226 0.7471 0.5580
5 26.0 27.0 29.7 25.0 3.40 0.7909 0.9828 0.4088
6 26.0 213 16.7 19.0 4.70 0.5676 0.2301 0.4526
7 17.0 187 11.0 15.0 3.02 0.3706 0.3713 0.7277
8 327 19.0 20.7 17.3 277 047 0.0166" 0.0095™ 0.1211
9 213 17.3 12.3 15.7 3.23 0.3280 0.1499 0.2708
Standing 1 46.0 35.0 387 39.0 5.88 0.6272 0.5141 0.3467
2 27.3 27.7 27.0 28.0 478 0.9989 0.9488 0.9428
3 26.0 283 220 23.0 5.93 0.8683 0.5636 0.9098
4 27.7 23.0 17.0 227 4.99 0.5456 0.3545 0.3107
5 16.7° 28.7° 13.0° 17.0° 1.95 0.0024" 04311 0.3911
6 223 322 247 23.0 5.79 0.6141 0.8301 0.3356
7 18.7° 22.7° 17.7° 17.3° 3.72 0.7340 0.5933 0.5679
8 22.0 17.7 23.0 17.0 4.96 0.7760 0.6715 0.8696
9 19.0 833 10.7 13.0 2.13 043 0.0373" 0.1512 0.0173"
Resting 1 34.3° 66.7¢ 40.0%® 60.3% 7.90 0.0549 0.3179 0.5939
2 423 50.0 387 353 5.98 0.4005 0.2579 0.3821
3 51.7¢ 38.7° 28.3%® 20.7° 3.28 0.85 0.0008™ <0.0001" 04113
4 43.0 26.7 29.0 36.7 9.97 0.6563 0.7024 0.2359
5 293 36.7 313 283 6.51 0.8069 0.7719 0.4289
6 58.7 61.7 303 35.0 10.4 0.1146 0.0694 0.9418
7 457 38.0 37.0 333 8.28 0.7624 0.3065 0.8043
8 39.3° 29.7%° 30.0° 32.0° 3.52 0.51 0.0640 0.0137 0.7168
9 19.7% 24.0" 28.0° 17.0° 1.62 0.64 0.0061" 0.6447 0.0027"

b Means in the same row with different superscripts are significantly different (P<0.05). "P<0.05, “P<0.01. "Treatments: 0% = diet containing 4% FSF, 0%
BOSC, and 15% Soybean meal; 5% = diet containing 4% FSF, 5% BOSC, and 10% soybean meal; 10% = diet containing 4% FSF, 10% BOSC and 5% soybean
meal, 15% = diet containing 4% FSF, 15% BOSC and 0% soybean meal. 2SEM = standard error of the mean.



Table 6 shows the relationships between enteric
methane emissions during different activities (standing,
feeding, and resting) on a weekly basis with baobab oil
seed cake inclusion in Dohne Merino diets. There was a
linear relationship between baobab oil seed cake inclusion
and enteric methane output in week 8 during feeding
(P<0.01). There was a quadratic relationship between
baobab oil seed cake inclusion and enteric methane
emissions, while Dohne merino wethers were standing in
week 9 (P<0.05). Enteric methane emissions during resting
decreased linearly with baobab oil seed cake inclusion in
Dohne Merino wethers (P<0.01). There was a linear
relationship between baobab oil seed cake inclusion in
Dohne Merino diets and enteric methane emissions during
resting in week 8 (P<0.05). There was a quadratic
relationship between baobab oil seed cake inclusion in
Dohne Merino diets and enteric methane emissions during
resting in week 9 (P<0.01).

DISCUSSION

The Rumen Environment

Rumen temperature and pH are crucial factors that
rely on the fermentation of ingested feeds in the rumen
(Fu et al, 2024). The findings of this research show no
significant differences in BOSC inclusion in rumen pH,
temperature, ammonia levels, and volatile fatty acids of
Dohne Merino wethers. Ruminal pH is the initial indicator
of the fermentation qualities in the rumen (Malebana,
2018). This study found that the rumen pH level (6.62 —
6.76) remained within the normal range of 6.1 — 6.8,
which is optimal for microbial fermentation. Additionally,
according to a study by Karimizadeh et al. (2017), the
ideal ruminal pH range for the growth of fibre-digesting
microbes is between 6 and 6.8. The rumen pH values
observed in this research were lower compared to the pH
values (7.86 — 8.70) reported by Binuomote et al. (2022),
in sheep, suggesting that the diets used in this study
create an optimal rumen environment for microbial
growth and fermentation. In this study, the ruminal pH
values are slightly lower than those reported by
Malebana (2018), in Dorper lambs that were given diets
containing Marula seedcake. However, they are
comparable since no significant differences were
observed across all diets. Osman et al. (2020), attributed
a significant decrease in rumen pH to an elevation in
volatile fatty acid production, reduced fibre, and
increased sugar content in the diet. Nevertheless, while
slightly lower ruminal pH values were observed in
wethers fed 5% BOSC in this research, BOSC inclusion did
not significantly affect ruminal pH. This indicates that the
supplementation of BOSC did not have an adverse effect
on the rumen environment and fermentation.

Ruminal ammonia represents a balance of dietary
nitrogen (N) breakdown, microbial protein synthesis, use,
and N uptake (Wahyono et al, 2022). If the rate of
protein degradation exceeds carbohydrate fermentation,
a significant amount of nitrogen is converted into
ammonia-N (Zurak et al, 2023). The mean ammonia
concentration in this study was above the minimal
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5mg/dL (Osman et al., 2020) and fell within the ideal
range of 5mg/dL — 25mg/dL for proper microbial growth
and function in the rumen. Rumen ammonia values in this
study are slightly lower than Shen et al. (2015), who
reported 10.Tmg/dL to 15.7mg/dL in dairy cows. These
findings suggest that BOSC supplementation maintained
optimal  microbial growth and efficient rumen
fermentation (Osman et al., 2020). The highest rumen
ammonia concentration in wethers fed 10% BOSC in this
study may indicate the level of crude protein degradability
and nitrogen uptake by the rumen microbes over amino
acids, ultimately leading to an increase in the supply of
metabolizable protein for the animals (Wahyono et al,
2022). Additionally, this might be attributed to the rumen
microbiota influenced by the diet composition to degrade
and hydrolyse protein (Cai et al., 2021).

Ruminants rely on volatile fatty acids, such as acetic
acid, butyric acid, and propionic acid, to meet about 70%
of their energy needs (Reddy & Hyder, 2023). These acids
are considered fundamental end-products of anaerobic
microbial fermentation of carbohydrates in the rumen
(Binuomote et al, 2022). The rumen's concentration of
volatile fatty acids is significantly influenced by the
animals' diet, dry matter intake, and feed digestibility
(Malebana, 2018). Diets that increase the synthesis of
volatile fatty acids can improve sheep performance and
productivity because they provide ruminants with more
energy (Penner, 2014). Fibre-rich diets promote acetate
production, while concentrates in diets promote
propionate and butyrate production. Furthermore, diets
high in protein increase the production of valerate and iso-
butyrate acid. The total volatile fatty acid values observed
in this study exceeded the 23.69-34.37mol/L range
reported by Binuomote et al. (2022). Additionally, the
values Okoruwa et al. (2016), reported ranged from 66.00 —
72.00mmol/L and were within the range of the total
volatile fatty acid values observed in this study.

When the production rate of volatile fatty acids is
higher than the clearance rate, there will build up in the
rumen. This would decrease rumen pH and trigger a
metabolic imbalance called rumen acidosis (Okoruwa,
2015; Binuomote et al., 2022). Nevertheless, the optimal
pH values observed in this study indicate that there was a
metabolic balance between volatile fatty acid production
and clearance in the rumen. The total volatile fatty acids
values of Dohne Merino wethers fed 0% and 10% BOSC
fell within the normal range of 60-150mmol/L (Martinez-
Fernandez et al,, 2014; Rad et al., 2016). The highest total
volatile fatty acids, acetate, butyrate, isobutyrate,
propionate, and isovalerate concentration, and the lowest
AP ratio observed in wethers fed 10% BOSC could be
attributed to an ideal balance of nutrients that led to
better fermentation of diets by rumen microbes and
improved nutrient utilization for energy production
(Malebana, 2018; Binuomote et al, 2022). The
antioxidants and bioactive compounds of BOSC might
have been at a concentration that maximizes their
beneficial effect. According to Binuomote et al. (2022),
the differences in volatile fatty acid concentrations in
various research studies could be attributed to the



physical fibrous nature, levels of starch content and
solubility of carbohydrates in the different dietary
treatments used in those studies.

Overall, volatile fatty acid concentration was
inconsistent with increasing inclusion levels of BOSC in this
study. Regardless, the lowest total volatile fatty acids,
acetate, propionate, butyrate, isobutyrate, isovalerate, and
valerate concentrations, were observed in wethers fed 15%
BOSC. Increased levels of BOSC may have resulted in
protein—tannin and tannin-carbohydrate bonds that are
not easily digestible, decreasing ammonia and volatile fatty
acid production (Ibrahim & Hassen, 2022). The volatile
fatty acid production is primarily dominated by acetate,
followed by propionate and butyrate. The findings from
this study indicate that acetate is the most prevalent,
followed by propionate and butyrate. Propionate
concentration increased as acetate concentration
increased. However, wethers fed 10% BOSC had the lowest
AP ratio. The lower A:P ratio could be due to an increase in
the concentration of propionic acid as acetic acid increased
and serves as a positive indicator for rumen fermentation
efficiency (Chen et al,, 2021) and a shift towards propionic
acid production reduces methane output, which s
beneficial to the animals and the environment (Pal and
Paul 2015; Soltan & Patra 2021).

Additionally, all diets in this study included FSF, a feed
additive at a 4% inclusion level, with the ability to buffer
and stabilize the rumen pH (lkusika & Mpendulo, 2022).
FSF also enhances the breakdown of proteins in other feed
ingredients, especially BOSC in this study, where the
protein was broken down to ammonia, which is used for
microbial protein synthesis, enhancing the growth and
activity of rumen microbes. Although there was a decrease
in TVFAs, acetate, butyrate, and isobutyrate in their study,
the values still fell within the optimal range. The addition
of fossil shell flour in all diets and BOSC supplementation
may have provided a balanced nutrient profile that
contributed to maintaining the rumen pH for the proper
growth of rumen microbes and improved nutrient
availability for volatile fatty acid production.

Enteric Methane Emission

Ruminants produce methane, a greenhouse gas that
contributes to environmental pollution and affects energy
utilization in sheep (Van Gastelen et al, 2019). Dry matter
intake (DMI) is one of the determinants of enteric methane
output in animals (Du Toit et al.,, 2013; Ramin & Huhtanen,
2013; Washaya et al, 2018). The more feed is consumed,
the more methane is produced by animals (Maigaard et al.,
2024). The findings from this study confirm this since
Dohne Merino wethers fed 15% BOSC had the highest DMI
and methane (L/day) and methane (g/kg DMI). The
findings of this study are consistent with Washaya et al.
(2018) and Saho et al. (2020), who observed increased
enteric methane output due to increased dry matter intake
in goat diets supplemented with baobab oil seed cake.
Similarly, Bhatt et al. (2020), also observed increased
enteric methane output in lambs with high dry matter
intake. The enteric methane output (L/day and g/kg DMI)
in this study was higher than that observed by Washaya et
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al. (2018), in goat diets supplemented with BOSC. The
lower methane output was attributed to the effect of
forage legumes supplemented in goat diets. In this study,
the higher methane values may be attributed to Dohne
Merino wethers increased dry matter intake.

Enteric methane emission in livestock varies based on
feed consumed, diet composition, physiological condition,
and activities such as standing, feeding, and resting
(Silvestre et al, 2021). Flores-Santiago et al. (2022),
reported that animals produce more methane while resting
than when standing or feeding, which is consistent with
the findings from this study. Chagunda et al. (2009),
Washaya et al. (2018) and Ikusika & Mpendulo (2023), also
reported similar findings in cows, goats, and sheep,
respectively. Microbial activities during resting result in
more methane production in the rumen than when
feeding. During resting, animals regurgitate, which reduces
the particle size of the feed and increases the surface area
of the feed for microbial fermentation (Washaya et al.,
2018). The lowest overall enteric methane emissions in
Dohne Merino wethers fed 10% BOSC may be attributed
to the lowest AP ratio and the highest propionate
concentration than those fed other diets in this study.

A study by Saho et al. (2020), showed reduced enteric
methane emission with increasing levels of baobab oil
seed cake in goats. This is in line with the findings from
this study. The reduction in enteric methane output
observed with increased BOSC inclusion levels may be
attributed to some secondary metabolites, such as tannins,
which modify microbial fermentation in the rumen by
inhibiting protein fermentation and blocking the activity of
methanogenic bacteria. According to Magonka et al.
(2018), BOSC contains anti-nutritional factors such as
tannins (2-12%), oxalates, and saponins, which are
relatively below levels toxic to animals. A study by Puchala
et al. (2005) and Nawab et al. (2020), showed that forage
that contains condensed tannins can potentially minimize
enteric methane emission in ruminants. Similarly, Van
Gastelen et al. (2019), reported that including tannin-rich
forage in sheep diets reduces methane production.
According to Njidda & Oloche (2022), the tannin content
of browsable species reduces methane production.
Uushona et al. (2022), alluded that tannins indirectly limit
fibre digestion and inhibit the activity of methanogens.

Considering methane emission over time, it was
observed in this present study that enteric methane
emissions decreased as the feeding period increased. This
contradicts Saho et al. (2020), who reported that goats
emitted more methane with time with BOSC
supplementation. Reduced methane emission with time
could be due to the animals adapting to the feed and the
continuous action of anti-nutritional factors coupled with
the increased production of propionate and reduced
hydrogen ions available for methane production (Bhatt et
al, 2023). The acetate: propionate ratio is also
hypothesized to be positively associated with methane
emissions (Negussie et al., 2017; Washaya et al.,, 2018).

Additionally, Ikusika & Mpendulo (2023),
supplemented diets with FSF and observed increased
methane output with increasing inclusion levels in sheep,



which contradicts the findings from this study. This can be
attributed to the variations in the proportions of other
ingredients, such as the inclusion of BOSC in this study,
which might have a synergistic effect to reduce enteric
methane emissions. The reduced enteric methane emission
is beneficial to the livestock industry and aligns with the
global efforts to mitigate climate change.

Conclusion

Fossil shell flour diets supplemented with varying
inclusion levels of baobab oil seed cake had no effect on
ruminal pH, temperature, ammonia concentration, and
volatile fatty acid concentration in Dohne Merino wethers.
However, enteric methane emission was significantly
affected. Including fossil shell flour at 4% supplemented
with 10% level of BOSC gives the best rumen environment
for fermentation and reduces enteric methane emission in
Dohne Merino wethers. The synergistic effect of these diets
on rumen fermentation and enteric methane emission
offers a sustainable and cost-effective approach to
improving Dohne Merino's productivity while mitigating
environmental impact thereby promoting sustainable
agriculture. Therefore, farmers can include these feed
resources to supplement livestock and increase production
because they are viable alternatives to chemical-based
feed additives and traditional feed sources.
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