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ABSTRACT  Article History 

The degradation of soil fertility in Kazakhstan’s arable lands, driven by prolonged 

anthropogenic pressures, poses a serious threat to the agro-industrial sector. This problem is 

especially acute in the irrigated regions of the southeast, where soil humus content has 

declined to critically low levels. To address this issue, the study employed multispectral 

imaging using unmanned aerial vehicles (UAVs) combined with the calculation of vegetation 

spectral indices (NDVI - Normalized Difference Vegetation Index, GNDVI - Green Normalized 

Difference Vegetation Index, SAVI - Soil Adjusted Vegetation Index) for monitoring winter 

wheat, soybean, and maize. Key soil fertility parameters, including humus horizon thickness 

and humus content, were correlated with vegetation indices. The efficiency of fertilizer 

application was evaluated through NDVI-based diagnostics, supported by direct 

measurements of nitrogen and chlorophyll content in plants. Furthermore, digital surface 

models enabled the consideration of within-field variability. The results demonstrated strong 

correlations between vegetation greenness indices, nutrient availability, and grain yield. NDVI 

proved to be a sensitive indicator of nitrogen nutrition, allowing for rapid and reliable 

diagnostics of plant mineral nutrition status. The integration of remote sensing techniques 

with ground-based observations provided an objective framework for assessing the condition 

of degraded soils, evaluating crop nutrient supply, and forecasting yields. 
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INTRODUCTION 
 

 Preserving the fertility of agricultural land and using it 

rationally is the main precondition for the stable 

development of the agro-industrial complex. Prolonged 

use of land in agricultural production causes changes in its 

natural properties and state. The most significant shift is 

the decrease in soil fertility. Fertility is one of the primary 

properties of soils, and its decline results from changes in 

all soil properties: biological, chemical, physical, 

hydrological, aerological, etc. (Baishanova & Kedelbaev, 

2016; Emde et al., 2021; Dong et al., 2022; Deng et al., 

2025). The forms and extent of changes in soil properties 

vary from case to case (Dunn et al., 2024; Ibraeva & 

Kurmanbaev, 2024). Depending on the characteristics of 

natural conditions and their economic use, currently about 

60% of Kazakhstan's soil cover experiences varying 

degrees of degradation (Baishanova & Kedelbaev, 2016; 

Smanov et al., 2023). As a result of prolonged agricultural 

use, the humus content of arable soils has decreased by 

one-third of its initial level in non-irrigated zones and by 

up to 60% in irrigated conditions. Harvest removes 

nutrients from the soil every year, and this removal is 

hundreds of times greater than the input of nutrients with 

fertilizers. Thus, the area of soils with low humus content 

accounts for 63% of non-irrigated lands and almost 98% of 

irrigated lands (Phogat et al., 2020; Kaldybayev et al., 2021; 

Cheng et al., 2021). In this context, it is crucial to 

investigate the processes of land degradation and to 

develop effective strategies for mitigating the most critical 

issues. In addition to humus depletion (degumification), 

irrigated soils are increasingly affected by secondary 

salinization, compaction, structural deterioration, and 

contamination with heavy metals. These factors collectively 
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disrupt soil water–air balance and nutrient dynamics, 

thereby impairing plant growth and reducing crop 

productivity (Suska-Malawska et al., 2022; Tokbergenova et 

al., 2023). Addressing these challenges requires the 

development of innovative, cost-effective, and energy-

efficient technical and technological solutions, integrating 

both remote sensing and ground-based monitoring 

approaches for sustainable land management. In the 

second half of the 20th century, the intensive utilization of 

satellite systems allowed for an increase in the diversity of 

data obtained in the form of space images, resulting in a 

more active use of multi- and hyperspectral analysis 

methods in various fields. The popularity of satellite data is 

explained by its ability to cover vast areas, a large archive, 

and short imaging intervals, as well as the improvement of 

their spatial resolution (Mikhaylenko & Timoshin, 2018; 

Kholodov, 2019; Jiang et al., 2025; Rigogiannis et al., 2025). 

In recent years, remote sensing of the Earth (RSE) has 

been extensively used in agriculture to solve many 

practical tasks. It is applied in the monitoring of 

agricultural land and creating visual maps of land use with 

the establishment of their actual use and the identification 

of unused areas, including yield forecasting. The analysis of 

remote sensing data (climatic and geographical 

conditions) allows solving the main problem — forecasting 

the yield of agricultural crops (Bogdanova et al., 2019; 

Alexopoulos et al., 2023; Martynova & Kravchenko, 2023; 

Ferraz et al., 2024). Remote sensing makes it possible to 

monitor the dynamics of crop development and vegetation 

conditions, determine their ripening time and optimal 

harvest start dates, and conduct economic analysis for the 

minimum and maximum yield levels consistently 

achievable in specific conditions. Among the methods of 

multi- and hyperspectral analysis, vegetation spectral 

indices (e.g., NDVI, GNDVI, and SAVI) play a central role, as 

they characterize the intensity of photosynthesis and the 

content of chlorophyll and nitrogen in plants. Studies show 

that these indices make it possible to quantitatively assess 

the nutrient supply of plants and to predict the yield of 

grain crops (Kizilgeci et al., 2021; Zhang & Li, 2024). For 

example, the RI-NDVI index has been successfully used to 

assess the response of winter wheat to nitrogen (Ali et al., 

2022) and the combination of NDVI and chlorophyll 

content indicators showed a strong correlation with the 

yield of durum wheat under semi-arid conditions (Kizilgeci 

et al., 2021). Unmanned aerial vehicles (UAVs) open up 

new possibilities for monitoring: they provide centimeter-

level resolution and flexible timing of imaging, which is 

especially important for diagnosing nitrogen status and 

chlorophyll content in plants. The integration of UAV and 

satellite data significantly increases the accuracy of 

diagnostics and yield forecasting (Bazrafkan et al., 2025; 

Yang et al., 2025; Chen et al., 2025). For the conditions of 

Kazakhstan, the use of such modern information 

technologies is of particular importance. Against the 

background of the high degree of degradation of the 

region’s irrigated lands, remote sensing methods make it 

possible to promptly identify areas with low humus 

content, compaction, salinization, and other signs of 

degradation, and to develop targeted agrotechnical 

measures. Based on this, the aim of the present study was 

to determine, using remote sensing data, the 

characteristics of anthropogenic transformation, 

restoration, and improvement of degraded irrigated light-

chestnut soils in southeastern Kazakhstan. This will make it 

possible to develop a methodological basis for 

establishing a remote monitoring system for soil 

degradation and grain crop productivity in the southern 

and southeastern regions of Kazakhstan, as well as 

contribute to the adaptation of agriculture to climate 

change and the enhancement of food security. 

 

MATERIALS & METHODS 

 

Aerial Survey 

 Aerial photography was conducted using DJI 

unmanned aerial vehicles (UAVs)—the Matrice 300 RTK 

(Real-Time Kinematic) and the Phantom 4 Multispectral—

equipped with RGB (Red, Green, and Blue) and 

multispectral sensors. The aerial surveys were performed 

on June 4 and August 23, 2024, between 10:00 and 14:00 

local time, under clear weather conditions and minimal 

cloud cover to ensure uniform surface illumination. Flights 

were carried out at an altitude of 100 meters, achieving a 

ground sample distance (GSD) of approximately 3–5cm per 

pixel. Real-Time Kinematic (RTK) technology was employed 

to enhance positional accuracy during image acquisition. 

 

Photogrammetric Processing 

 Photogrammetric processing of the UAV imagery was 

performed using DJI Terra software, which enables 

automated processing and generation of high-precision 

georeferenced cartographic materials. The workflow 

included the following stages: 

1. Data Import and Preliminary Calibration 

 The original RGB and multispectral images, along 

with RTK-corrected positional data, were imported into 

the software to ensure accurate georeferencing. Internal 

camera parameters (e.g., focal length, lens distortion) 

were automatically calibrated, and low-quality images 

were excluded to produce a consistent dataset for 

further analysis. 

2. Point Cloud Generation and Orthomosaic Creation 

A dense point cloud was generated automatically, 

followed by the production of a high-resolution 

orthophotomap and a digital surface model (DSM) of the 

study area. These outputs facilitated detailed spatial 

analysis of the surveyed terrain. 

3. Radiometric Correction and Vegetation Index 

Calculation 

 Radiometric correction was applied using a calibration 

panel to standardize reflectance values across the dataset. 

Based on the processed multispectral imagery, vegetation 

indices—including the Normalized Difference Vegetation 

Index (NDVI), Green NDVI (GNDVI), and Soil-Adjusted 

Vegetation Index (SAVI)—were computed to assess 

vegetation condition and cover characteristics. 

 The quantitative assessment of within-field variability 

and nitrogen sufficiency in winter wheat crops on the 

experimental plot was conducted with portable 
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photometers. In this, the leading indicator within the NDVI 

was the green phytomass of agricultural crops, which is 

determined by chlorophyll content. 

 The layout of the stationary experiment represents an 

incomplete factorial design 1/8 (4×4×4×4), including 32 

variants in two replications. For convenience of 

presentation, the variants were coded. Each variant is 

designated by a four-digit number, where the order of 

digits corresponds to the types of fertilizers (the first — 

nitrogen, the second — phosphorus, the third — 

potassium, and the fourth — manure), and the value of 

each digit indicates the rate of the respective fertilizer (0, 

1, 2, 3). A single rate of fertilizer was set as follows: 

nitrogen — 60kg ha-1, phosphorus — 60kg ha-1, 

potassium — 60kg ha-1, and manure — 20 t ha-1. Thus, the 

code 1221 corresponds to N60P120K120M20, and so on. 

The impact of anthropogenic factors (tillage, crops, and 

fertilizers) on the degree of degradation of arable soils, 

considering the relief, was evaluated based on fertility 

indicators (humus and humus horizon thickness) obtained 

from soil samples (Fig. 1). 

 

 

A 
 

B 

 
 

 

Fig. 1: A) map of the experimental site location; B) actual (georeferenced) 

locations of soil sampling points. 

 

Statistical Analysis 

 All experimental data obtained from field 

observations, UAV-derived indices, and laboratory 

analyses were subjected to statistical processing to ensure 

accuracy and reproducibility. Descriptive statistics, 

including mean values, standard deviations, and 

coefficients of variation, were calculated for soil fertility 

indicators (humus content, horizon thickness), vegetation 

indices (NDVI, GNDVI, SAVI), nitrogen and chlorophyll 

concentrations, and crop yield parameters. The 

relationships between soil fertility parameters, vegetation 

indices, and yield components were evaluated using 

Pearson’s correlation analysis. Correlation coefficients (r) 

were computed to assess the strength and direction of 

associations between variables such as total nitrogen 

content, chlorophyll concentration, NDVI values, and grain 

yield. Statistical significance of correlations was 

determined using the t-test, with significance levels 

accepted at P<0.05. Confidence intervals for correlation 

coefficients were estimated at the 95% level. For factorial 

comparisons, data from the 4×4×4×4 multifactor 

stationary experiment were analyzed to determine the 

main and interaction effects of nitrogen, phosphorus, 

potassium, and manure application on grain yield and 

physiological parameters. The analysis of variance 

(ANOVA) was performed using a general linear model to 

test treatment effects, and means were compared using 

the least significant difference (LSD) test at P<0.05. 

Regression analyses were conducted to derive predictive 

models of grain yield based on nitrogen and chlorophyll 

contents measured during the tillering phase. Linear 

regression equations were fitted, and model accuracy was 

evaluated using the coefficient of determination (R²) and 

the standard error of estimate (SEE). All statistical analyses 

were performed using STATISTICA 13.3 (TIBCO Software 

Inc.) and Microsoft Excel 2021, which were also used for 

graphical visualization of results, including scatter plots, 

trend lines, and confidence intervals. 

 

RESULTS AND DISCUSSION 

 

 As part of this study, remote sensing was applied to 

create a detailed orthophoto map of the area — a 

photographic map showing the Earth's surface and the 

objects under study with precise alignment to the given 

coordinate system. Orthophoto maps are created based on 

images captured by UAVs, which are transformed from 

central projection to orthogonal using the 

orthotransformation method (Homolová et al., 2013; 

Pisman et al., 2015; Komarova et al., 2016; Salnikov & 

Tukhina, 2018). Below we juxtapose a satellite image of the 

area as of June 2024 (Fig. 2) and a high-resolution 

orthophoto map for the same period (Fig. 3). 

 The drawbacks of the satellite image are its insufficient 

resolution and interference caused by clouds, which hinder 

detailed analysis. The resulting orthophoto map has 

precise georeferencing in the EPSG (European Petroleum 

Survey Group) coordinate system: 32643 WGS (World 

Geodetic System)-84 / UTM (Universal Transverse 

Mercator, Northern Hemisphere, Zone 43N), and features 

excellent detail (3cm per pixel). This enables its overlay 

with other map layers and allows for comprehensive data 

analysis and various measurements, such as determining 

distances, areas, object coordinates, dimensions, and more. 

Orthophoto maps of the study area were utilized both as a 

spatial foundation for generating maps, topographic plans, 

and schematic representations, and as an independent 

analytical layer for cartographic applications, cadastral 

assessments, and engineering surveys. The orthophoto 

maps produced in this study had a scale of 1:500, 

ensuring high spatial precision suitable for detailed  analysis. 
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Fig. 2: Satellite image.  Fig. 3: High-resolution orthophoto map in the coordinate system EPSG: 32643 WGS-84 / UTM 

zone 43N, overlaid on a satellite image. 

 

 

A 

 

B 

 
 

 

Fig. 4: Development of field crops as of: a) June 4, 2024, b) August 23, 2024. 

The high-resolution orthophoto maps (Fig. 4) illustrate the 

dynamics of crop growth across different observation 

periods during the growing season—June and August 

2024. Distinct changes in color reflectance were observed 

between the tillering and harvesting stages, transitioning 

from darker to lighter hues, which corresponded to 

variations in plant vigor and phenological development. As 

shown in Fig. 5, the orthophoto map obtained on June 4, 

2024, revealed heterogeneity in soybean growth stages, 

reflecting spatial variability in early crop establishment. By 

contrast, the orthophoto from August 23, 2024, indicated 

that the entire field was in an active growth phase, with 

uniform vegetation cover and no visible signs of stress or 

degradation, confirming the overall healthy condition of 

the crop stand during the late-season assessment. 

 It has been noted in many studies that the reflectance 

of plants changes as they grow and develop and can 

characterize their physiological condition (Herrero-Huerta 

et al., 2020; Smith et al., 2021; Crusiol et al., 2024). In 

addition, a direct correlation is observed between the 

development of plants according to the orthophoto map 

(Fig. 5) and soil fertility indicators (humus horizon 

thickness and humus content) on these plots (Table 1). 

Studies on soil carbon management (Gholizadeh et al., 

2018; Vaudour et al., 2019; Lal, 2020) have shown that the 

thickness of the humus horizon and the content of organic 
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carbon directly affect the growth of cultivated plants, 

which is reflected in their spectral characteristics. Research 

demonstrates a direct correlation between vegetation 

spectral indices (NDVI, GNDVI) and data on soil humus 

content. Remote sensing data and orthophoto maps make 

it possible to visualize this relationship, including the 

heterogeneity of plots based on color characteristics. 
 

 

А 

 

В 

 
 

 

Fig. 5: Development of soybean as of: a) August 23, 2024, b) June 4, 2024. 

 

Table 1: The dependence of soil humus content on the thickness of the 

humus horizon in soybean crops 

№ sample identifier Geographic coordinates Thickness, cm Humus, % 

latitude longitude 

1 179 43.2259008 76.6911563 30 1.67 

2 119 43.2257810 76.6900919 37 1.76 

3 116 43.2269819 76.6898665 50 2.57 

 

 The NDVI reflects the amount of photosynthetically 

active biomass and is determined by the absorption and 

reflection of rays in the red and near-infrared regions of 

the spectrum by plants. The values of the index for 

vegetation range from 0.20 to 0.95. The better the 

vegetation develops during the growing season, the higher 

the NDVI. Thus, the NDVI can be applied to assess plant 

development during the growing season. Furthermore, the 

NDVI can be used to monitor the stages of plant growth 

and development (Osipov et al., 2011; Afanas'ev, 2019; 

Sychev et al., 2020). Fig. 6 accurately reflects the state of 

the seedlings on June 4, 2024, and the stage of initial corn 

cob formation on August 23, 2024. The results of the soil 

sample analysis for fertility indicators match the level of 

crop development as of August 23, 2024 (Table 2). 

Essentially, a digital surface model is a three-dimensional 

depiction of surface elevations. Fig. 7 below presents the 

results obtained in creating the digital surface (relief) 

model of the experimental plot. The changes in color from 

light to dark demonstrate the heterogeneity of the 

experimental plot and an overall decrease in elevation 

towards the northwest. A critical condition for high and 

good-quality yields is ensuring that plants receive 

sufficient nutrients throughout the growing season. 

Starting from seed germination and the emergence of the 

primary root, winter wheat plants require phosphorus, and 

with the emergence of the first leaves, they start to need 

nitrogen. Sufficient phosphorus and nitrogen nutrition at 

the initial stage stimulates the growth and development of 

plants, improves nutrient absorption, and boosts plant 

growth. As can be seen from Fig. 8, nitrogen fertilizers 

have a decisive effect on grain yield. Phosphorus fertilizers 

proved to be virtually ineffective, which can be explained 

by the relatively high content of available phosphorus in 

the soil of the stationary experimental plot (40.8mg kg-1) as 

a result of long-term and systematic application of 

phosphorus fertilizer. Given the significant influence of 

nitrogen fertilizers on the yield of winter wheat, based on 

research data for 2023–2025, the relationship between 

nitrogen and chlorophyll content in plants and grain yield 

was analyzed. On this basis, nitrogen supply and greenness 

indices were calculated (Table 3).  

 

 

A 

 

B 

 
 

 

Fig. 6: GNDVI Orthophoto Map – Dynamics of Maize Development as of: a) 

June 4, 2024; b) August 23, 2024. 

 

 
 

Fig. 7: Digital surface (relief) model of the experimental plot. 
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Fig. 8: The influence of fertilizers on the yield increase of winter wheat grain 

(in 2024–2025). 
 

Table 2: The dependence of soil humus content on the thickness of the 

humus horizon in maize crops 

№ sample identifier Geographic coordinates Thickness, cm Humus, % 

latitude longitude 

4 174 43.2278833 76.6908978 40 2.15 

6 173 43.2282517 76.6908244 35 1.75 

7 83 43.2281216 76.6891990 35 1.26 

8 82 43.2285182 76.6890833 36 1.33 

 

Table 3: Nitrogen sufficiency for winter wheat plants and greenness indices 

for different levels of grain yield (on average for 2023–2025)  

Grain yield, t ha-1 ˂ 3.0 3.1–3.5 3.6–4.0 4.1–4.5 4.6–5.0 ˃5.0 

Total N, % ˂ 2.6 2.7–3.0 3.1–3.3 3.4–3.7 3.8–4.0 ˃4.0 

Chlorophyll, mg g-1 ˂ 1.8 1.9–2.3 2.4–2.7 2.8–3.1 3.2–3.5 ˃3.5 

 

 The feasibility of predicting wheat grain yield based 

on total nitrogen or chlorophyll content during the tillering 

phase—a critical developmental stage determining 

potential yield formation—is supported by the results 

presented in Figs. 9 and 10. A multifactor stationary 

experiment with a 4×4×4×4 factorial design comprising 32 

variants and 64 plots (two replications) was conducted to 

compare the actual grain yield with its predicted values 

derived from nitrogen and chlorophyll measurements. The 

analysis revealed strong positive correlations between 

grain yield and both physiological indicators. Specifically, 

the correlation between grain yield and nitrogen content 

was r = 0.75 (n = 64, t = 8.98, P<0.05, 95% CI: 0.59–0.83), 

while the correlation between grain yield and chlorophyll 

content was r = 0.73 (n = 64, t = 8.41, P<0.05, 95% CI: 

0.62–0.84). These results indicate that nitrogen and 

chlorophyll levels measured during the tillering stage can 

serve as reliable early predictors of final grain yield. Our 

findings are consistent with previous studies 

demonstrating similar relationships between spectral and 

biochemical indicators of plant status and yield outcomes 

(Filella & Peñuelas 1994; Haboudane et al., 2002; 

Piekarczyk et al., 2021; Kurihara et al., 2023; Nguyen et al., 

2023; Jain et al., 2024). Similar relationships between 

vegetation indices and yield have been reported in other 

studies. For instance, Herrero-Huerta et al. (2020) found R² 

= 0.72 between NDVI and soybean yield using UAV 

multispectral data, while Jiang et al. (2025) reported R² = 

0.78 for winter wheat when integrating UAV and satellite 

data. Our results align with these findings, confirming the 

robustness of UAV-derived indicators for early yield 

prediction under diverse agro-ecological conditions. 

 Another objective of our study was to test the 

possibility of determining the mineral nutrition of winter 

wheat plants by remote diagnostics through the 

photometric determination of the NDVI. Photometric 

diagnostics were carried out in 2023–2025 using a portable 

GreenSeeker sensor, which measures the NDVI index from 

light reflected by the leaf surface and emitted at two 

wavelengths (Fig. 11). The obtained spectral indices are 

directly dependent on the level of nitrogen sufficiency of 

winter wheat. With an increase in the introduced mineral 

nitrogen from 60 to 180kg ha-1, the NDVI grew from 

0.64 to 0.72. The aftereffect of 20–60t ha-1 of manure 

brought  in  a smaller shift — from 0.62 to 0.67. In contrast,  

 

  
 

Fig. 9: Factual and estimated yields (by total N content) of wheat grain (in 

2024–2025). 

 

 
 

Fig. 10: Factual and estimated yields (by chlorophyll content) of wheat 

grain (in 2024–2025). 

 

 
 

Fig. 11: Fertilizer rates and spectral indices of winter wheat at the booting 

stage (in 2024–2025). 

 

potassium fertilizers had close to no effect on NDVI 

indicators apart from a slight downward trend at higher 

application rates. The provided diagnostic indicators 

obtained through remote sensing and traditional methods 

and their close association with each other and with yield, 
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expressed by high pairwise linear correlation coefficients, 

prove the possibility of determining the nitrogen nutrition 

status of winter wheat plants based on NDVI data. The 

integration of UAV-based remote sensing with field 

nitrogen and chlorophyll assessments represents a novel 

methodological framework for Kazakhstan’s irrigated 

agriculture. Unlike conventional field monitoring, this 

approach allows high-precision, spatially continuous 

assessment of soil degradation and crop stress. The study’s 

findings can support regional precision-farming policies 

aimed at sustainable land use and early yield forecasting. 

 

Conclusion 

1. UAV imagery revealed changes in plant color reflectance 

at different growth stages and its direct relationship with 

soil fertility indicators. 

2. The digital surface model identified heterogeneity of the 

plot and degradation zones, confirmed by ground-based 

studies. 

3. Spectral indices showed a direct dependence on 

nitrogen supply to winter wheat: increasing nitrogen rates 

from 60 to 180kg ha-1 raised NDVI from 0.64 to 0.72; 

manure application (20–60t ha-1) increased it from 0.62 to 

0.67; potassium had almost no effect. 

4. A statistical relationship was established between 

nitrogen and chlorophyll content in plants and grain yield; 

nitrogen sufficiency and greenness indices were calculated. 

5. NDVI proved to be as effective as traditional methods 

for diagnosing nitrogen nutrition and can be used in 

irrigated farming to assess within-field variability and 

nitrogen requirements to achieve planned yields. 
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