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ABSTRACT

Article History

The degradation of soil fertility in Kazakhstan's arable lands, driven by prolonged
anthropogenic pressures, poses a serious threat to the agro-industrial sector. This problem is
especially acute in the irrigated regions of the southeast, where soil humus content has
declined to critically low levels. To address this issue, the study employed multispectral
imaging using unmanned aerial vehicles (UAVs) combined with the calculation of vegetation
spectral indices (NDVI - Normalized Difference Vegetation Index, GNDVI - Green Normalized
Difference Vegetation Index, SAVI - Soil Adjusted Vegetation Index) for monitoring winter
wheat, soybean, and maize. Key soil fertility parameters, including humus horizon thickness
and humus content, were correlated with vegetation indices. The efficiency of fertilizer
application was evaluated through NDVI-based diagnostics, supported by direct
measurements of nitrogen and chlorophyll content in plants. Furthermore, digital surface
models enabled the consideration of within-field variability. The results demonstrated strong
correlations between vegetation greenness indices, nutrient availability, and grain yield. NDVI
proved to be a sensitive indicator of nitrogen nutrition, allowing for rapid and reliable
diagnostics of plant mineral nutrition status. The integration of remote sensing techniques
with ground-based observations provided an objective framework for assessing the condition
of degraded soils, evaluating crop nutrient supply, and forecasting yields.
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INTRODUCTION

Preserving the fertility of agricultural land and using it
rationally is the main precondition for the stable
development of the agro-industrial complex. Prolonged
use of land in agricultural production causes changes in its
natural properties and state. The most significant shift is
the decrease in soil fertility. Fertility is one of the primary
properties of soils, and its decline results from changes in
all  soil properties: biological, chemical, physical,
hydrological, aerological, etc. (Baishanova & Kedelbaev,
2016; Emde et al, 2021; Dong et al, 2022; Deng et al,
2025). The forms and extent of changes in soil properties
vary from case to case (Dunn et al, 2024; Ibraeva &
Kurmanbaev, 2024). Depending on the characteristics of
natural conditions and their economic use, currently about

degrees of degradation (Baishanova & Kedelbaev, 2016;
Smanov et al., 2023). As a result of prolonged agricultural
use, the humus content of arable soils has decreased by
one-third of its initial level in non-irrigated zones and by
up to 60% in irrigated conditions. Harvest removes
nutrients from the soil every year, and this removal is
hundreds of times greater than the input of nutrients with
fertilizers. Thus, the area of soils with low humus content
accounts for 63% of non-irrigated lands and almost 98% of
irrigated lands (Phogat et al.,, 2020; Kaldybayev et al., 2021;
Cheng et al, 2021). In this context, it is crucial to
investigate the processes of land degradation and to
develop effective strategies for mitigating the most critical
issues. In addition to humus depletion (degumification),
irrigated soils are increasingly affected by secondary
salinization, compaction, structural deterioration, and

60% of Kazakhstan's soil cover experiences varying contamination with heavy metals. These factors collectively
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disrupt soil water-air balance and nutrient dynamics,
thereby impairing plant growth and reducing crop
productivity (Suska-Malawska et al., 2022; Tokbergenova et
al, 2023). Addressing these challenges requires the
development of innovative, cost-effective, and energy-
efficient technical and technological solutions, integrating
both remote sensing and ground-based monitoring
approaches for sustainable land management. In the
second half of the 20th century, the intensive utilization of
satellite systems allowed for an increase in the diversity of
data obtained in the form of space images, resulting in a
more active use of multi- and hyperspectral analysis
methods in various fields. The popularity of satellite data is
explained by its ability to cover vast areas, a large archive,
and short imaging intervals, as well as the improvement of
their spatial resolution (Mikhaylenko & Timoshin, 2018;
Kholodov, 2019; Jiang et al., 2025; Rigogiannis et al., 2025).

In recent years, remote sensing of the Earth (RSE) has
been extensively used in agriculture to solve many
practical tasks. It is applied in the monitoring of
agricultural land and creating visual maps of land use with
the establishment of their actual use and the identification
of unused areas, including yield forecasting. The analysis of
remote sensing data (climatic and geographical
conditions) allows solving the main problem — forecasting
the yield of agricultural crops (Bogdanova et al, 2019;
Alexopoulos et al, 2023; Martynova & Kravchenko, 2023;
Ferraz et al., 2024). Remote sensing makes it possible to
monitor the dynamics of crop development and vegetation
conditions, determine their ripening time and optimal
harvest start dates, and conduct economic analysis for the
minimum and maximum yield levels consistently
achievable in specific conditions. Among the methods of
multi- and hyperspectral analysis, vegetation spectral
indices (e.g., NDVI, GNDVI, and SAVI) play a central role, as
they characterize the intensity of photosynthesis and the
content of chlorophyll and nitrogen in plants. Studies show
that these indices make it possible to quantitatively assess
the nutrient supply of plants and to predict the yield of
grain crops (Kizilgeci et al, 2021; Zhang & Li, 2024). For
example, the RI-NDVI index has been successfully used to
assess the response of winter wheat to nitrogen (Ali et al,
2022) and the combination of NDVI and chlorophyll
content indicators showed a strong correlation with the
yield of durum wheat under semi-arid conditions (Kizilgeci
et al, 2021). Unmanned aerial vehicles (UAVs) open up
new possibilities for monitoring: they provide centimeter-
level resolution and flexible timing of imaging, which is
especially important for diagnosing nitrogen status and
chlorophyll content in plants. The integration of UAV and
satellite data significantly increases the accuracy of
diagnostics and yield forecasting (Bazrafkan et al., 2025;
Yang et al., 2025; Chen et al., 2025). For the conditions of
Kazakhstan, the use of such modern information
technologies is of particular importance. Against the
background of the high degree of degradation of the
region’s irrigated lands, remote sensing methods make it
possible to promptly identify areas with low humus
content, compaction, salinization, and other signs of
degradation, and to develop targeted agrotechnical
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measures. Based on this, the aim of the present study was
to determine, using remote sensing data, the
characteristics of  anthropogenic  transformation,
restoration, and improvement of degraded irrigated light-
chestnut soils in southeastern Kazakhstan. This will make it
possible to develop a methodological basis for
establishing a remote monitoring system for soil
degradation and grain crop productivity in the southern
and southeastern regions of Kazakhstan, as well as
contribute to the adaptation of agriculture to climate
change and the enhancement of food security.

MATERIALS & METHODS

Aerial Survey

Aerial photography was conducted using DIl
unmanned aerial vehicles (UAVs)—the Matrice 300 RTK
(Real-Time Kinematic) and the Phantom 4 Multispectral—
equipped with RGB (Red, Green, and Blue) and
multispectral sensors. The aerial surveys were performed
on June 4 and August 23, 2024, between 10:00 and 14:00
local time, under clear weather conditions and minimal
cloud cover to ensure uniform surface illumination. Flights
were carried out at an altitude of 100 meters, achieving a
ground sample distance (GSD) of approximately 3-5cm per
pixel. Real-Time Kinematic (RTK) technology was employed
to enhance positional accuracy during image acquisition.

Photogrammetric Processing

Photogrammetric processing of the UAV imagery was
performed using DJI Terra software, which enables
automated processing and generation of high-precision
georeferenced cartographic materials. The workflow
included the following stages:
1. Data Import and Preliminary Calibration

The original RGB and multispectral images, along
with RTK-corrected positional data, were imported into
the software to ensure accurate georeferencing. Internal
camera parameters (e.g., focal length, lens distortion)
were automatically calibrated, and low-quality images
were excluded to produce a consistent dataset for
further analysis.
2. Point Cloud Generation and Orthomosaic Creation
A dense point cloud was generated automatically,
followed by the production of a high-resolution
orthophotomap and a digital surface model (DSM) of the
study area. These outputs facilitated detailed spatial
analysis of the surveyed terrain.
3. Radiometric Correction and Vegetation
Calculation

Radiometric correction was applied using a calibration
panel to standardize reflectance values across the dataset.
Based on the processed multispectral imagery, vegetation
indices—including the Normalized Difference Vegetation
Index (NDVI), Green NDVI (GNDVI), and Soil-Adjusted
Vegetation Index (SAVI)—were computed to assess
vegetation condition and cover characteristics.

The quantitative assessment of within-field variability
and nitrogen sufficiency in winter wheat crops on the
experimental plot was conducted with portable
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photometers. In this, the leading indicator within the NDVI
was the green phytomass of agricultural crops, which is
determined by chlorophyll content.

The layout of the stationary experiment represents an
incomplete factorial design 1/8 (4x4x4x4), including 32
variants in two replications. For convenience of
presentation, the variants were coded. Each variant is
designated by a four-digit number, where the order
digits corresponds to the types of fertilizers (the first
nitrogen, the second phosphorus, the third
potassium, and the fourth — manure), and the value
each digit indicates the rate of the respective fertilizer (0,
1, 2, 3). A single rate of fertilizer was set as follows:
nitrogen — 60kg ha', phosphorus — 60kg ha’,
potassium — 60kg ha™', and manure — 20 t ha'. Thus, the
code 1221 corresponds to N60P120K120M20, and so on.
The impact of anthropogenic factors (tillage, crops, and
fertilizers) on the degree of degradation of arable soils,
considering the relief, was evaluated based on fertility
indicators (humus and humus horizon thickness) obtained
from soil samples (Fig. 1).

Fig. 1: A) map of the experimental site location; B) actual (georeferenced)
locations of soil sampling points.

Statistical Analysis

All  experimental data obtained from field
observations, UAV-derived indices, and laboratory
analyses were subjected to statistical processing to ensure
accuracy and reproducibility. Descriptive = statistics,
including mean values, standard deviations, and
coefficients of variation, were calculated for soil fertility
indicators (humus content, horizon thickness), vegetation
indices (NDVI, GNDVI, SAVI), nitrogen and chlorophyll
concentrations, and crop yield parameters. The
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relationships between soil fertility parameters, vegetation
indices, and yield components were evaluated using
Pearson's correlation analysis. Correlation coefficients (r)
were computed to assess the strength and direction of
associations between variables such as total nitrogen
content, chlorophyll concentration, NDVI values, and grain
yield. Statistical significance of correlations was
determined using the t-test, with significance levels
accepted at P<0.05. Confidence intervals for correlation
coefficients were estimated at the 95% level. For factorial
comparisons, data from the 4x4x4x4 multifactor
stationary experiment were analyzed to determine the
main and interaction effects of nitrogen, phosphorus,
potassium, and manure application on grain yield and
physiological parameters. The analysis of variance
(ANOVA) was performed using a general linear model to
test treatment effects, and means were compared using
the least significant difference (LSD) test at P<0.05.
Regression analyses were conducted to derive predictive
models of grain yield based on nitrogen and chlorophyll
contents measured during the tillering phase. Linear
regression equations were fitted, and model accuracy was
evaluated using the coefficient of determination (R? and
the standard error of estimate (SEE). All statistical analyses
were performed using STATISTICA 13.3 (TIBCO Software
Inc.) and Microsoft Excel 2021, which were also used for
graphical visualization of results, including scatter plots,
trend lines, and confidence intervals.

RESULTS AND DISCUSSION

As part of this study, remote sensing was applied to
create a detailed orthophoto map of the area — a
photographic map showing the Earth's surface and the
objects under study with precise alignment to the given
coordinate system. Orthophoto maps are created based on
images captured by UAVs, which are transformed from
central  projection to  orthogonal using the
orthotransformation method (Homolova et al, 2013;
Pisman et al, 2015, Komarova et al., 2016; Salnikov &
Tukhina, 2018). Below we juxtapose a satellite image of the
area as of June 2024 (Fig. 2) and a high-resolution
orthophoto map for the same period (Fig. 3).

The drawbacks of the satellite image are its insufficient
resolution and interference caused by clouds, which hinder
detailed analysis. The resulting orthophoto map has
precise georeferencing in the EPSG (European Petroleum
Survey Group) coordinate system: 32643 WGS (World
Geodetic  System)-84 / UTM (Universal Transverse
Mercator, Northern Hemisphere, Zone 43N), and features
excellent detail (3cm per pixel). This enables its overlay
with other map layers and allows for comprehensive data
analysis and various measurements, such as determining
distances, areas, object coordinates, dimensions, and more.
Orthophoto maps of the study area were utilized both as a
spatial foundation for generating maps, topographic plans,
and schematic representations, and as an independent
analytical layer for cartographic applications, cadastral
assessments, and engineering surveys. The orthophoto
maps produced in this study had a scale of 1:500,
ensuring high spatial precision suitable for detailed analysis.
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Fig. 2: Satellite image.

Fig. 3: High-resolution orthophoto map in the coordinate system EPSG: 32643 WGS-84 / UTM

zone 43N, overlaid on a satellite image.

A

Fig. 4: Development of field crops as of: a) June 4, 2024, b) August 23, 2024.

The high-resolution orthophoto maps (Fig. 4) illustrate the
dynamics of crop growth across different observation
periods during the growing season—June and August
2024. Distinct changes in color reflectance were observed
between the tillering and harvesting stages, transitioning
from darker to lighter hues, which corresponded to
variations in plant vigor and phenological development. As
shown in Fig. 5, the orthophoto map obtained on June 4,
2024, revealed heterogeneity in soybean growth stages,
reflecting spatial variability in early crop establishment. By
contrast, the orthophoto from August 23, 2024, indicated
that the entire field was in an active growth phase, with
uniform vegetation cover and no visible signs of stress or
degradation, confirming the overall healthy condition of
the crop stand during the late-season assessment.

It has been noted in many studies that the reflectance
of plants changes as they grow and develop and can
characterize their physiological condition (Herrero-Huerta
et al, 2020; Smith et al, 2021; Crusiol et al, 2024). In
addition, a direct correlation is observed between the
development of plants according to the orthophoto map
(Fig. 5) and soil fertility indicators (humus horizon
thickness and humus content) on these plots (Table 1).
Studies on soil carbon management (Gholizadeh et al,
2018; Vaudour et al,, 2019; Lal, 2020) have shown that the
thickness of the humus horizon and the content of organic



carbon directly affect the growth of cultivated plants,
which is reflected in their spectral characteristics. Research
demonstrates a direct correlation between vegetation
spectral indices (NDVI, GNDVI) and data on soil humus
content. Remote sensing data and orthophoto maps make
it possible to visualize this relationship, including the
heterogeneity of plots based on color characteristics.

Fig. 5: Development of soybean as of: a) August 23, 2024, b) June 4, 2024.

Table 1: The dependence of soil humus content on the thickness of the
humus horizon in soybean crops

N2 sample identifier ~Geographic coordinates Thickness, cm Humus, %

latitude longitude
1 179 43.2259008 76.6911563 30 1.67
2 119 43.2257810 76.6900919 37 1.76
3 116 43.2269819 76.6898665 50 2.57

The NDVI reflects the amount of photosynthetically
active biomass and is determined by the absorption and
reflection of rays in the red and near-infrared regions of
the spectrum by plants. The values of the index for
vegetation range from 0.20 to 0.95. The better the
vegetation develops during the growing season, the higher
the NDVI. Thus, the NDVI can be applied to assess plant
development during the growing season. Furthermore, the
NDVI can be used to monitor the stages of plant growth
and development (Osipov et al, 2011; Afanas'ev, 2019;
Sychev et al, 2020). Fig. 6 accurately reflects the state of
the seedlings on June 4, 2024, and the stage of initial corn
cob formation on August 23, 2024. The results of the soil
sample analysis for fertility indicators match the level of
crop development as of August 23, 2024 (Table 2).
Essentially, a digital surface model is a three-dimensional
depiction of surface elevations. Fig. 7 below presents the
results obtained in creating the digital surface (relief)
model of the experimental plot. The changes in color from
light to dark demonstrate the heterogeneity of the
experimental plot and an overall decrease in elevation
towards the northwest. A critical condition for high and
good-quality yields is ensuring that plants receive
sufficient nutrients throughout the growing season.
Starting from seed germination and the emergence of the
primary root, winter wheat plants require phosphorus, and
with the emergence of the first leaves, they start to need
nitrogen. Sufficient phosphorus and nitrogen nutrition at
the initial stage stimulates the growth and development of
plants, improves nutrient absorption, and boosts plant
growth. As can be seen from Fig. 8, nitrogen fertilizers
have a decisive effect on grain yield. Phosphorus fertilizers
proved to be virtually ineffective, which can be explained
by the relatively high content of available phosphorus in

786

Int J Agri Biosci, 2026, 15(2): 782-789.

the soil of the stationary experimental plot (40.8mg kg™') as
a result of long-term and systematic application of
phosphorus fertilizer. Given the significant influence of
nitrogen fertilizers on the yield of winter wheat, based on
research data for 2023-2025, the relationship between
nitrogen and chlorophyll content in plants and grain yield
was analyzed. On this basis, nitrogen supply and greenness
indices were calculated (Table 3).

Fig. 6: GNDVI Orthophoto Map — Dynamics of Maize Development as of: a)
June 4, 2024; b) August 23, 2024.

'775 m

745 m

Fig. 7: Digital surface (relief) model of the experimental plot.
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Table 2: The dependence of soil humus content on the thickness of the
humus horizon in maize crops

N2 sample identifier Geographic coordinates  Thickness, cm Humus, %

latitude longitude
4 174 43.2278833 76.6908978 40 2.15
6 173 43.2282517 76.6908244 35 1.75
7 83 43.2281216 76.6891990 35 1.26
8 82 43.2285182 76.6890833 36 1.33

Table 3: Nitrogen sufficiency for winter wheat plants and greenness indices
for different levels of grain yield (on average for 2023-2025)

Grain yield, t ha™ <3.0 3.1-35 3640 4145 46-5.0 >50
Total N, % <26 27-30 3.1-33 34-37 38-40 >40
Chlorophyll, mg g <18 19-23 24-27 28-31 32-35 >35

The feasibility of predicting wheat grain yield based
on total nitrogen or chlorophyll content during the tillering
phase—a critical developmental stage determining
potential yield formation—is supported by the results
presented in Figs. 9 and 10. A multifactor stationary
experiment with a 4x4x4x4 factorial design comprising 32
variants and 64 plots (two replications) was conducted to
compare the actual grain yield with its predicted values
derived from nitrogen and chlorophyll measurements. The
analysis revealed strong positive correlations between
grain yield and both physiological indicators. Specifically,
the correlation between grain yield and nitrogen content
was r = 0.75 (n = 64, t = 8.98, P<0.05, 95% Cl: 0.59-0.83),
while the correlation between grain yield and chlorophyll
content was r = 0.73 (n = 64, t = 8.41, P<0.05, 95% ClI:
0.62-0.84). These results indicate that nitrogen and
chlorophyll levels measured during the tillering stage can
serve as reliable early predictors of final grain yield. Our
findings are  consistent with  previous  studies
demonstrating similar relationships between spectral and
biochemical indicators of plant status and yield outcomes
(Filella & Pefuelas 1994; Haboudane et al, 2002;
Piekarczyk et al., 2021; Kurihara et al., 2023; Nguyen et al.,,
2023; Jain et al, 2024). Similar relationships between
vegetation indices and yield have been reported in other
studies. For instance, Herrero-Huerta et al. (2020) found R?
= 0.72 between NDVI and soybean yield using UAV
multispectral data, while Jiang et al. (2025) reported R? =
0.78 for winter wheat when integrating UAV and satellite
data. Our results align with these findings, confirming the
robustness of UAV-derived indicators for early yield
prediction under diverse agro-ecological conditions.

Another objective of our study was to test the
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possibility of determining the mineral nutrition of winter
wheat plants by remote diagnostics through the
photometric determination of the NDVI. Photometric
diagnostics were carried out in 2023-2025 using a portable
GreenSeeker sensor, which measures the NDVI index from
light reflected by the leaf surface and emitted at two
wavelengths (Fig. 11). The obtained spectral indices are
directly dependent on the level of nitrogen sufficiency of
winter wheat. With an increase in the introduced mineral
nitrogen from 60 to 180kg ha™', the NDVI grew from
0.64 to 0.72. The aftereffect of 20-60t ha' of manure
brought in a smaller shift — from 0.62 to 0.67. In contrast,

Grain yield, t ha-1

variants of the experiment

— Actual s Calculated

Fig. 9: Factual and estimated yields (by total N content) of wheat grain (in
2024-2025).
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Fig. 10: Factual and estimated yields (by chlorophyll content) of wheat
grain (in 2024-2025).
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Fig. 11: Fertilizer rates and spectral indices of winter wheat at the booting
stage (in 2024-2025).

potassium fertilizers had close to no effect on NDVI
indicators apart from a slight downward trend at higher
application rates. The provided diagnostic indicators
obtained through remote sensing and traditional methods
and their close association with each other and with yield,



expressed by high pairwise linear correlation coefficients,
prove the possibility of determining the nitrogen nutrition
status of winter wheat plants based on NDVI data. The
integration of UAV-based remote sensing with field
nitrogen and chlorophyll assessments represents a novel
methodological framework for Kazakhstan's irrigated
agriculture. Unlike conventional field monitoring, this
approach allows high-precision, spatially continuous
assessment of soil degradation and crop stress. The study’s
findings can support regional precision-farming policies
aimed at sustainable land use and early yield forecasting.

Conclusion

1. UAV imagery revealed changes in plant color reflectance
at different growth stages and its direct relationship with
soil fertility indicators.

2. The digital surface model identified heterogeneity of the
plot and degradation zones, confirmed by ground-based
studies.

3. Spectral indices showed a direct dependence on
nitrogen supply to winter wheat: increasing nitrogen rates
from 60 to 180kg ha™ raised NDVI from 0.64 to 0.72;
manure application (20-60t ha™") increased it from 0.62 to
0.67; potassium had almost no effect.

4. A statistical relationship was established between
nitrogen and chlorophyll content in plants and grain yield;
nitrogen sufficiency and greenness indices were calculated.
5. NDVI proved to be as effective as traditional methods
for diagnosing nitrogen nutrition and can be used in
irrigated farming to assess within-field variability and
nitrogen requirements to achieve planned yields.
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