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ABSTRACT 
 

Striga, also called witch weed, is a notorious obligate root hemiparasitic weed of global food security crops such as 

sorghum, maize, millet and upland rice causing considerable yield loss in Sub Saharan Africa. Several Striga control 

measures have been developed which include cultural, chemical and resistance breeding. However, many of these 

methods are either not practically successful or are not economically feasible for low-income farmers. Furthermore, the 

negative effects of agrichemicals on the environment have attracted scientist to look for an alternative weed management 

strategy. The use of microorganisms naturally occurring in the soil as biological control agents offer an alternative 

approach to control the parasitic weeds. Soil is the natural home of numerous forms of beneficial microorganism playing 

vital role in maintaining the dynamic equilibrium. In recent time, soil born microbes, primarily bacteria and fungi, 

become the most effective Striga management strategy that targets Striga seed bank in the soil. Hence, this review 

presents a comprehensive and new approach on the roles of soil microbes in fight against Striga. 
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INTRODUCTION 

 

Striga, also commonly called ‘Witch weed’, are 

important root parasites of many cereal and legume crops. 

It is one of the greatest biological constraints to food 

production in arid and semi-arid regions of Sub-Saharan 

Africa (SSA) where sorghum is widely grown (Spallek et 

al., 2013). The genus Striga is under the family 

Orobanchaceae that contains the highest number of 

parasitic species (Atera et al., 2011). Approximately, more 

than 30 Striga species have been described and most 

parasitize cereals including sorghum, pearl millet, finger 

millet, upland rice and maize grown in most semi-arid and 

tropical regions of the world (Adagba et al., 2002; Atera et 

al., 2011; Spallek et al., 2013). Complex host-parasite 

interactions, production of large number of seeds with 

prolonged viability (about 800,000 seeds per plant which 

can remain viable in the soil for up to 20 years) and special 

germination requirements make Striga the most problematic 

weed (Mourik, 2007: Atera et al., 2011; Teka, 2014).  

Available Striga control methods include cultural and 

mechanical, chemical, resistance breeding and biological 

control (Teka, 2014; Sibhatu, 2016) and genetic 

engineering and/or mutation breeding (Pixley et al., 2019). 

These strategies help to improve soil fertility or directly 

target the parasite by chemical or mechanical means and 

include the use of resistant varieties as well as cultural 

measures (Teka, 2014). Though these approaches have 

helped in reducing the impact of this parasitic weed, they 

could not effectively address the problem as intended 

(Kountche et al., 2019). Hence, these limitations triggered 

weed scientist to look for an alternative and eco-friendly 

approach to control Striga and such methods rely on the use 

of soil microorganisms.  

 

Origin and Distribution of Striga 

Striga originated along a region between Ethiopia and 

Sudan (Atera et al., 2011). This parasite weed is generally 

native to SSA but has been observed in more than 40 

countries (Ejeta, 2007). Out of more than 30 species of 

Striga described, nine species are found outside Africa and 

three species: S. curvilflora, S. multiflora and S. parviflora 

are present in the Australian continent (Berner et al., 1995; 

Spallek et al., 2013). 

S. hermonthica is widely spread in semi-arid areas and is 

found in northern tropical Africa, from West Africa (Senegal) 

to Eastern Africa (Ethiopia, Uganda and Kenya), and the 

Democratic Republic of Congo, and extends from the western 

Arabian region and southwards into Angola, Namibia, 

Madagascar and Tanzania (Parker and Riches 1993; Atera et 

al., 2011). Nigeria, Sudan, Ethiopia, Mali and Burkina Faso 

are heavily affected counties in Africa (Sibhatu, 2016).  
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Striga asiatica is the most widely distributed and is 

found throughout African tropical parts from portions of 

southern (including Madagascar), central, and western 

Africa and Australia (Cochrane and Press, 1997). It is also 

native to Asia including the Philippines, Cambodia, 

Indonesia, China, Malaysia, Thailand, Vietnam, Mauritius, 

India and the Arabian Peninsula. S. asiatica has been 

introduced to the United States. S. gesnerioides is endemic 

to Africa, Arabia and Asia and it has been introduced to the 

United States (Mohamed et al., 2007).  

 

Economic Importance of Striga 

Among Striga species described, five Striga species, S. 

hermonthica, Striga asiatica, S. gesnerioides Striga aspera 

Striga forbesi, are currently of economic importance, with 

Striga hermonthica causing the most serious damage to 

Sub-Saharan cereal production (Parker, 2009). The most 

devastating Striga species to staple crops in Sub SSA are S. 

hermonthica, S. asiatica, and S. gesnerioides. (Spallek et 

al., 2013; Teka, 2014). Most Striga species parasitize grass 

species, but S. gesnerioides has evolved the capacity to 

parasitize dicotyledonous plants (Spallek et al, 2013). 

S. hermonthica is particularly harmful to sorghum, 

maize and millet, but it is also increasingly being found in 

sugarcane and rice fields (Atera et al., 2011). Depending on 

Striga seed density, soil fertility, rainfall distribution, 

variety grown and degree of Striga infestation, the parasitic 

weeds damage ranges from 20-80% of staple food crops in 

the semi-arid tropics of Africa and Asia. The situation in 

Sudan is even worse, where yield losses in cereal crops 

heavily infested by S. hermonthica may reach up to 100% 

yield loss (Ejeta, 2007; Atera et al., 2011).  

The annual crop losses due to Striga are estimated at 

US$ 7 billion in SSA and particularly in Ethiopia, Mali and 

Nigeria, it is estimated at US$75 million, US$87million 

and US$1.2 billion, respectively (AATF, 2011). Yield 

losses due to Striga can reach up to 100 percent in 

susceptible cultivars under a high infestation level and 

when compounded by drought conditions (Haussmann et 

al., 2000). 

 

The parasitic life cycle of Striga 

Striga species are annual plants completing most of 

their life cycle underground. The life cycle of Striga can be 

divided into three critical stages: germination, haustorium 

development and establishment of parasitism and its 

maintenance until seeds are set (Spallek et al., 2013).  

Striga seed germination is elicited when ripened seeds 

are preconditioned by exposure to warm moist conditions 

for several days, in a process known as conditioning or 

preconditioning, followed by exogenous chemical signals 

produced by host roots (strigolactones) and some non-hosts 

(germination stimulant) (Ejeta and Butler, 1993; Babiker 

2007). After germination the radicle elongates towards the 

root of the host, develops an organ of attachment, the 

haustorium, that helps to penetrates into the host vascular 

tissue and establish parasitism. This follows the deprivation 

of water, mineral nutrients and carbohydrates of host plant, 

causing drought stress and wilting (Berner et al., 1997; 

Musselman, 1980). 

Conditioning, germination, parasitic contact 

(attachment) and penetration are mediated by elegant 

systems of chemical communication between host and 

parasite (Sato et al., 2003). After several weeks of growth, 

the parasite emerges above the soil surface and starts to 

flower and produce seeds (Kroschel, 2002; Rich and Ejeta, 

2007). 

 

Role of Soil Microbes in Striga Management 

Soil microbes constitute a dynamic component of soil 

that carry out many beneficial functions in the soil system 

(Toor and Adnan, 2020). Plants and microbes are 

interacting in the soil in various ways. For example, fungi 

and bacteria have beneficial effects in agriculture including 

nitrogen fixation, mineralization, pesticide decomposition, 

and production of growth promoters, antibiotic production 

and biological weed control (Manoharachary et al., 2002; 

Kremer, 2005; Rodriguez et al., 2019). 

Furthermore, the limitations of chemical herbicides 

encouraged researchers to look for alternative systems of 

weed control (Boyette et al., 1991). Biological control is 

considered as a potential cost effective, safe and 

environmentally beneficial alternative as a means of 

reducing weed populations in crops (Charudattan, 2001). 

Beneficial microorganisms used as bio-control agents and 

with potential of enhancing plant growth and health include 

bacteria belonging to the genera Pseudomonas, 

Burkholderia, Bacillus; fungi belonging to the genera 

Trichoderma, Gliocladium and nonpathogenic Fussarium 

oxysporum (Raaijmakers et al., 2009). Majority of 

microbes used as bioherbicides are fungal pathogens, 

though there are increasing number of bacterial strains 

being explored and developed as bio-control of weed as 

well (Bailey and Falk 2011).  

Among bacteria species used as potential biological 

control of weed, Pseudomonas fluorescens and 

Xanthomonas campestris have been widely investigated for 

their use as bioherbicides (Babalola et al., 2007; Harding 

and Raizada, 2015). For example, a virulent strain of 

Xanthomonas campestris was shown to control common 

cocklebur (Xanthium strumarium L.) which is an important 

weed in soybean, cotton and peanut production (Boyette 

and Hoagland, 2013). In contrast to Xanthomonas ssp. not 

all Pseudomonas ssp. are phytopathogens. Pseudomonas 

chlororaphis and P. fluorescens strains have been also used 

as biocontrol agents, while several strains of Pseudomonas 

aeruginosa and Pseudomonas. stutzeri show strong plant 

growth-promoting activities (Shen et al. 2013). Several P. 

putida strains were also used to control velvetleaf and S. 

hermonthica, P. fluorescens strains to control S. 

hermonthica, broomrape and wild radish (Stubbs and 

Kennedy, 2012). Furthermore, strains belonging to the genera 

Burkholderia, Aeromonas, Chryseomonas, Agrobacterium 

and Vibrio spp., were tested for potential use as bioherbicides 

(Li and Kremer, 2006; Babalola et al., 2007). 

 

The Mycorrhizal Fungi 

Mycorrhizal is mutually beneficial symbiotic 

association between particular soil inhabiting fungi (called 

mycorrhizal fungi) and roots of higher plants (Sieverding, 

1991) for their role in supplying important nutrients and 

increasing health (Bonfante and Anca, 2009; Parihar et al., 

2020). Arbuscular mycorrhizal (AM) fungi have gained 

significance as a result of their role in soil fertility, nutrient 

uptake, biocontrol of plant diseases and weed management 

(Jordan et al., 2000; Manoharachary et al., 2002).  
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Fig. 1: Generalized Striga life cycle (Rich and Ejeta, 2007) 
 

Fungal have received great attention as biocontrol 

agents against pest (Benitez et al., 2004). The fungal 

pathogen, Fusarium oxysporum f.sp are reported to play 

significant role in Striga bio-control in sorghum, 

particularly when the method is integrated with other Striga 

control strategies. Most importantly, this fungus has 

capability to destroy Striga prior to its penetration to the root 

of the sorghum and compete with host (Rebeka et al. 2013). 

Pot and field experiment showed that AM fungi inhibited 

Striga seed germination, reduced the number of Striga 

seedlings attaching and emerging, preventing attachment to 

host, delayed the emergence time of Striga and enhanced the 

performance of the host plant (Lendzemo et al, 2006). 

Moreover, the genus Trichoderma comprises a great 

number of free-living fungi inhabiting in soil and plant root 

ecosystems, capable to decompose various substrates, 

promote plant grwoth and with antimicrobial properties 

(Harman et al., 2004; Celar and Valic 2005) and that act as 

biological control agents. Out of the fungi utilized as 

biocontrol, majority of them were Trichoderma strains 

(Benítez et al., 2004). Tichoderma strains reported to have 

potential of promoting plant growth and enhance defense 

mechanisms in plant (Monte, 2001). Aqueous extracts of 

Trichoderma viride and Trichoderma. harzianum 

inoculated with seed resulted in significant reduction in 

Striga germination with T. harzianum 97% germination 

inhibition (Hassan et al., 2013; Hassan et al., 2019).  

 

The Rhizobacteria 

Rhizosphere is the narrow region of soil that is directly 

influenced by living roots, and the primary site of 

interaction between plants and microorganism 

(Raaijmakers et al., 2009). The microbe-plant interaction 

in the rhizosphere can be beneficial, neutral or deleterious 

on the basis of their effects on plant growth (Glick, 1995). 

The potential of using bioherbicides to control weeds such 

as S. hermonthica has received increasing attention 

(Charudattan, 2001; Gafar et al., 2016) for the purposes 

briefly discussed below. 

 

Germination Induction 

Bacterial effect on Striga seed could be either 

germination induction, in the absence of host plant or 

inhibition (Berner et al., 1999; Ahonsi et al., 2002). For 

example, bacterial strains of P. syringae pv. glycinea 

induced early germination of Striga seeds, pseudal 

germination, and reduced subsequent establishment of 

Striga. The main growth regulators hormones acting as 

germination promoters produced by P. syringae are 

indoleacetic acid (IAA) and ethylene (Babalola et al., 

2007). P. syringae strains stimulated more germination of 

S. hermonthica seeds as compared to the synthetic ethylene 

gas (Berner et al., 2003). 

This bacterium can be highly applicable in inducing 

pseudal germination of Striga seeds but its use in 

agriculture is limited because of its pathogenesis. A 

procedure of testing bacterial stimulation of Striga 

germination through the action of ethylene in the absence 

of host plant has been also developed (Babiker et al., 1993; 

Berner et al., 1999)  

Furthermore, some other bacteria produce growth-

regulators like auxins, cytokinins and gibberellins which 

are necessary in priming Striga seeds prior to germination 

thus reducing the preconditioning period and promotes 

germination (Hoagland and Williams 2003; Joel et al., 

2007). Although little is known about the mechanism of 

action of IAA prior to Striga seed germination, the 

hormone is critical in establishing the orientation of xylem 

differentiation between host and parasite (Hoagland and 

Williams 2003; Delavault et al., 2017). 

 

Germination Inhibition 

Some microorganisms colonizing the root surface 

have growth inhibition effect on parasitic weeds like Striga. 

Soil bacteria including Pseudomonas sp., Enterobacter 

sakazakii and Klebsiella oxytoca have been evaluated for 

their potential to inhibit S. hermonthica seed germination 

(Babaloala and Odhiambo, 2008). Other studies have also 

shown that P. fluorescens and Pseudomonas putida isolates 

significantly inhibit germination of S. hermonthica seeds 

(Babalola and Glick, 2012; Babalola et al., 2007). 

Furthermore, an in vitro evaluation of the effect of 

Azospirillum cells on Striga seed in the presence of GR24 

demonstrated unsuppressed germination but shortened 

radicles. It has also been suggested that phytohormones 

such as IAA or lipophilic compounds released by the 

bacteria caused suppressed germination, radical growth 

and cell differentiation (Miché et al., 2000). 
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Modes of Action of Bioherbicides 

Microorganisms act as bioherbicides through 

promoting plant growth, enhancing defense mechanisms 

and antibiosis, mycoparasitism, competition, phosphate 

solubilization, nitrogen fixation and production of 

phytohormones such as indole acetic acid and (IAA) and 

cytokinins (Tripura et al., 2005; Idris et al., 2007; Vinale et 

al., 2008). Many Pseudomonas strains are characterized as 

deleterious rhizobacteria. These are group non-parasitic 

pathogens which excrete exopolysaccharides and 

allelochemicals in the form of phytotoxins, 

phytohormones, cyanide, siderophores and that can 

negatively affect the metabolism of plants (Li and Kremer, 

2006). Soil bacteria or endophytes may produce host-

specific phytotoxic secondary metabolites. For example, 

bacterial pathogens like Agrobacterium spp. and 

Pseudomonas savastanoi pv. savastanoi produce auxins, 

which cause tumor and gall formation, and Enterobacter sp. 

strain produces IAA and seedlings of lettuce and radish 

inoculated with this strain showed reduced biomass 

production (Carvalho et al., 2007). 

 

Phosphate Solubilization  

Soil fertility and Striga infestation is reported to 

correlate negatively (Larsson, 2012). Nitrogen and 

phosphorous deficiency when compounded with drought 

or water stress found to exacerbate severity of Striga 

damage to hosts plants (Adagba et al., 2002). Microbial 

community increases soil fertility by mineralization and 

solublization of insoluble phosphates in soil (Kang et al., 

2002; Chen et al., 2006). Certain bacteria and fungi are 

known to have capacity to mobilize insoluble phosphates 

in the soil and play significant role in availing 

phosphorous (P) to plants (Zhang et al., 2020). Group of 

fungi under the genera Aspergillus and Penicillium and 

bacterial general including Pseudomonas, Bacillus, 

Rhizobium, Enterobacter are known to be among the 

potential phosphate solubilizers (Whitelaw, 2000; Patil et 

al., 2012; Saxena et al., 2016). 

 

Nitrogen Fixation 

Nitrogen (N2) is the most abundant and essential 

element for all forms of life (Frank et al., 2003; 

Egamberdieva and Kucharova, 2008). Plant growth 

promoting free living microorganisms play a vital role in 

fixing nitrogen from the unavailable gaseous form in the 

atmosphere to forms those plants can use (Vitousek et al., 

2002; Shridhar, 2012). Rhizobium, Azospirillum, 

Azotobacter, Enterobacter species are group of N- fixing 

bacteria used for improving plant growth and development 

by synthesizing gibberellins (GA), auxin, cytokinins, 

indole-3 acetic acid (IAA) hormones (Affourtit et al., 2001; 

Gonzalez et al., 2005; Lee et al., 2006; Emtiazi et al., 

2007).  

Due to the negative correlation between severity of 

infestation and soil fertility, Nitrogen is reported to be an 

essential element for suppressing Striga infection on host 

plants (Parker and Riches, 1993; Lendzemo, 2004). 

Evaluation of the effects of nitrogen on Striga infestation 

resulted in delayed germination, reduced radicle 

elongation, decreased stimulant production and decreased 

seeds response to the germination stimulant by host plants 

(Rajn et al., 1990; Singh et al., 1991).  

Production of Phytotoxin and other Secondary 

Metabolites 

Secondary metabolites produced by microbes have 

comparably shorter life spans and are biodegradable than 

conventional halogenated chemical structures. 

Rhizobacteria for biological control of weeds likely 

metabolize phytotoxins at root surfaces where they’re 

readily absorbed by the plant. It’s not known how 

widespread phytotoxin production is among weed 

biocontrol rhizobacteria, but evidence is accumulating 

showing that phytotoxins play a causal role in deleterious 

activity (Kao-Kniffin et al., 2013; Shirdashtzadeh, 2014). 

Metabolites such as phaseolotoxin, tabtoxin, and 

coronatine were produced by Pseudomonas sp. and found 

to exhibit good herbicidal activity (Saxena, 2014). Within 

the rhizosphere of plants, the metabolites produced are 

often can be phytotoxic at beyond physiologic 

concentrations and these include the indole acetic acid 

(IAA), auxins and hydrogen cyanide. Other herbicidal 

compounds prevent the germination of seeds through 

inhibition or arrestment (Kao-Kniffin et al., 2013). 

Many rhizobacterial genera are known to produce IAA 

and auxin-related compounds. The best examples are the 

genera of Acetobacter, Agrobacterium, Arthobacter, 

Azospirillum, Azotobacter, Bacillus, Klebsiella, 

Pseudomonas and Xanthomonas (Idris et al., 2007; 

Spaepen et al., 2008; Ali et al., 2010; Spaepen and 

Vanderleyden, 2011; Saha et al., 2012). 

In addition, Cyanide was identified as secondary 

metabolite produced by many rhizosphere bacteria and 

having growth inhibition effects to suppress weeds 

(Kremer and Souissi, 2001). It is produced by a wide range 

of plants, bacteria and algae and it is proved to be 

accontable for growth reduction of weeds (Lakshmi et al., 

2015). The production of this toxic chemical could be a 

common trait of many Rhizosphere Pseudomonas spp. 

Cyanide is a potential inhibitor of enzymes involved in 

various plant metabolic processes (Reetha et al., 2014). 

Other herbicidal compounds prevent the germination of 

seeds through inhibition or arrestment (Kao-Kniffin et al., 

2013). 

Some rhizobacteria are also capable to intracellularly 

produce many antibiotics and secrete through cell 

membranes into the surrounding vicinity. Some of these are 

toxic compounds that inhibit seed germination and growth 

in various weed plants. Example of these group of bacteria 

include Streptomyces saganonensis, Streptomyces 

hygroscopicus; Streptomyces viridochromogenes; 

Streptomyces hygroscopicus; Streptomyces acidiscabies; 

Pseudomonas syringae pv. Tagetis (Hoerlein, 1994; 

Heisey, 1990; Mallik, 2001; Lee et al., 2003; Singh et al., 

2003; Lydon et al., 2011; Kao-Kniffin et al., 2013). 

 

Conclusion 

In conclusion, Striga is a major biotic constraint 

causing a serious threat to production of cereal crops 

including sorghum, maize, finger millet, pearl millet and up 

land rice in sub-Saharan Africa. Though many control 

options available, none of them could effectively manage 

Striga parasitism. However, biological control using soil 

microbes, particularly fungi and bacteria, is getting 

momentum and offering an alternative approach to control 

Striga infestation. Since Striga causes considerable damage 
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before it emerges above the ground, its control measures 

has to target its seed bank in the soil. This can be achieved 

with naturally occurring soil microbes capable of depleting 

its seed bank. Microbes play a great role in Striga 

management by inhibiting Striga seed germination, 

improving soil fertility, secreting phytotoxic and secondary 

metabolites and promoting host plant growth and 

development.  
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