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ABSTRACT  Article History 

The extraction of chlorophyll from Caulerpa racemosa using Natural Deep Eutectic Solvents 

(NADES) composed of glucose and glycerol offers a sustainable alternative to conventional 

solvents. This study investigates the efficiency of chlorophyll extraction using different molar 

ratios of glucose to glycerol NADES (1:1, 1:2, and 1:3). Fresh samples of C. racemosa were 

collected, cleaned, dried, and ground into a fine powder. The NADES mixtures were prepared 

by heating and stirring glucose, glycerol, and water until a clear, homogeneous liquid formed. 

Chlorophyll extraction was performed using a shaker incubator, followed by filtration and 

centrifugation to obtain a clear supernatant. Fourier Transform Infrared Spectroscopy with 

Attenuated Total Reflectance (FTIR-ATR) was employed to analyze the functional groups in the 

extracted chlorophyll. The FTIR spectra confirmed the presence of key functional groups 

associated with chlorophyll molecules, such as O-H, C-H, and C=O, validating the extraction 

process. The results demonstrated that the glucose-glycerol NADES mixtures were effective in 

extracting chlorophyll from C. racemosa, with the 1:2 ratio showing the highest efficiency. It 

was concluded that use of NADES presents several advantages, including environmental 

friendliness, non-toxicity, and biodegradability, making it a promising method for large-scale 

chlorophyll extraction for applications in pharmaceuticals, food, and cosmetics. Future 

research could focus on optimizing NADES compositions and exploring their potential for 

extracting other bioactive compounds.  
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INTRODUCTION 
 

The extraction of chlorophyll from natural sources has 

attracted significant attention due to its various 

applications, such as natural dyes and pharmaceutical 

agents (Li et al., 2022; Manivasagan et al., 2017; Molina et 

al., 2023). C. racemosa, a type of green seaweed abundant 

in Indonesian waters, is known for its richness in 

chlorophyll, making it a promising natural source of this 

compound (Magdugo et al., 2020; Taher et al., 2021; Erniati 

et al., 2023). The use of Natural Deep Eutectic Solvents 

(NADES) for chlorophyll extraction offers advantages over 

traditional solvents, being environmentally friendly and 

enhancing the efficiency of bioactive compound extraction 

(Hashemi et al., 2022; Bragagnolo et al., 2024). In this 

study, a NADES composed of glucose and glycerol is 

utilized for chlorophyll extraction from C. racemosa, aiming 

to achieve optimal extraction results. 

Fourier Transform Infrared Spectroscopy (FTIR-ATR) is 

employed in this research to identify functional groups and 

molecular structures in the extracted chlorophyll (De 

Moraes & Vieira, 2014; Da Silva Leite et al., 2018; Falcioni 

et al., 2022). Through FTIR analysis, various functional 

groups in chlorophyll, such as methyl, ketone, amine, and 

ester, can be detected, providing insights into the chemical 

composition of the extracted chlorophyll and enabling 

comparisons of extraction efficiency among different 

methods  (Pérez-Gálvez et  al.,  2020;  Rahim  et  al.,  2023).  
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The main objective of this study is to qualitatively analyze 

the chlorophyll extracted from C. racemosa using glucose-

glycerol NADES with FTIR, aiming to offer new insights into 

environmentally friendly and efficient extraction methods 

with broad industrial applications. 

The effectiveness of NADES in chlorophyll extraction 

has been demonstrated for extracting both hydrophilic 

and lipophilic compounds from natural sources, indicating 

its potential in extracting bioactive compounds (Lee et al., 

2023; Obluchinskaya et al., 2021; Tiago et al., 2022). NADES 

have also shown promising antioxidant properties, 

particularly in scavenging radicals like DPPH (Hikmawanti 

et al., 2021; Rukavina et al., 2021). Moreover, the stability 

of NADES and their ability to maintain the stability of 

extracted bioactive molecules during storage further 

emphasize their suitability for various applications, 

including pharmaceutical and cosmetic product 

development (Zannou & Koca, 2020; Zengin et al., 2022). 

The use of NADES in chlorophyll extraction aligns with 

the trend of employing these solvents for extracting 

natural products. NADES have been extensively researched 

for their efficacy in extracting a wide range of bioactive 

compounds from different sources, showcasing their 

versatility and potential in various industries. Their 

environmentally friendly nature and capacity to enhance 

the stability and antioxidant activity of extracted 

compounds make them a preferred option for extraction 

processes. The qualitative analysis of chlorophyll extracted 

from C. racemosa using glucose-glycerol NADES with FTIR 

represents a significant advancement in environmentally 

friendly and efficient extraction methods. By leveraging the 

benefits of NADES in chlorophyll extraction, this research 

not only contributes to the understanding of natural 

compound extraction but also opens up new possibilities 

for the application of chlorophyll in diverse industries, from 

pharmaceuticals to cosmetics. The objectives of this study 

are to qualitatively analyze the chlorophyll extracted from 

C. racemosa using glucose-glycerol NADES, employing 

FTIR to identify and compare the functional groups and 

molecular structures in the extracted chlorophyll. This 

research aims to offer new insights into environmentally 

friendly and efficient extraction methods, with potential 

applications in various industries, including 

pharmaceuticals and cosmetics. 

 

MATERIALS & METHODS 
 

Collection of Samples 

Fresh samples of C. racemosa were collected from the 

coastal waters of Jepara, Central Java, Indonesia. The algae, 

known for its high chlorophyll content, were harvested at 45 

days of age. The samples included all parts of the C. 

racemosa thallus: rhizoids, stolons, and ramuli. These were 

meticulously cleaned with fresh water to remove any dirt, 

sand, or other impurities. After cleaning, the samples were 

air-dried and then ground into a fine powder using a mortar 

and pestle, preparing them for the extraction process. 

 

Preparation of Natural Deep Eutectic Solvent (NADES) 

The NADES was prepared by mixing glucose and 

glycerol with water (40% w/w) in various molar ratios 

(EM1=1:1; EM2=1:2, and EM3=1:3). The mixture was 

heated to 65°C while stirring at 200rpm until a clear, 

homogeneous liquid formed. The preparation process was 

based on the method described by Dai et al. (2013), with 

modifications to optimize the extraction conditions. The 

NADES were then allowed to cool to room temperature 

before being stored in sealed containers for further use. 

 

Extraction of Chlorophyll 

The extraction process involved using a shaker 

incubator. Five grams of fresh C. racemosa was mixed with 

50 mL of the prepared NADES (1:10 solid-to-solvent ratio). 

The mixture was placed in the shaker incubator and 

agitated at 200 rpm and 40°C for 30 min. Post-extraction, 

the mixture was filtered using Whatman filter paper No. 1, 

and the filtrate was centrifuged at 15,000 rpm for 15 min at 

4°C to obtain a clear supernatant. This supernatant was 

then subjected to further analysis. 

 

Analysis Using FTIR 

Fourier Transform Infrared Spectroscopy with 

Attenuated Total Reflectance (FTIR-ATR) was used to 

analyze the functional groups present in the extracted 

chlorophyll. The FTIR-ATR spectra were recorded in the 

range of 4000–400cm ⁻¹ using a Thermo Fisher Scientific 

Nicolet iS5 FTIR Spectrometer. The analysis focused on 

identifying key functional groups such as C=O, C-O, C-H, 

and N-H, which are indicative of chlorophyll molecules. 

 

Statistical Analysis 

All experiments were conducted in triplicate to ensure 

the reliability and reproducibility of the results. Data 

obtained from the FTIR analysis were statistically analyzed 

using one-way ANOVA to compare the extraction 

efficiencies of the different NADES molar ratios. A post-hoc 

Tukey’s test was applied to determine significant 

differences between groups. The significance level was set 

at P<0.05. Statistical analyses were performed using SPSS 

software (Version 25.0, IBM Corp., Armonk, NY, USA). 

 

RESULTS & DISCUSSION 

 

FTIR Analysis 

The FTIR spectra for the NADES mixtures revealed 

several significant peaks corresponding to different 

functional groups. The major peaks and their respective 

intensities and areas for each molar ratio are 

summarized below. 

 

FTIR Analysis of Chlorophyll Extract Using 1:1 Glucose-

Glycerol NADES (EM1) 

The FTIR spectrum of the chlorophyll extract using a 

1:1 glucose-glycerol NADES mixture (EM1) revealed several 

significant peaks, indicating the presence of functional 

groups associated with chlorophyll. The peak at 

3304.53cm⁻¹ indicated O-H stretching vibrations, which are 

typical for hydroxyl groups found in chlorophyll molecules, 

suggesting the presence of alcohols or phenols in the 

extracted compound. Additionally, the peaks at 2942.27, 

2883.80, and 2924.27cm⁻¹ corresponded to C-H stretching 

vibrations, associated with the methylene (CH₂) and methyl 
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(CH₃) groups present in the chlorophyll structure. 

Furthermore, the peak at 1641.57cm⁻¹ was characteristic of 

C=O stretching vibrations, typically associated with 

carbonyl groups such as ketones or aldehydes, which are 

present in the chlorophyll molecule. These peaks confirm 

the successful extraction of chlorophyll from C. racemosa 

using the 1:1 glucose-glycerol NADES mixture. The 

presence of these functional groups is consistent with the 

molecular structure of chlorophyll, thereby validating the 

effectiveness of the NADES in extracting chlorophyll. 

 

 
 
Fig. 1: The FTIR spectra of the extracted chlorophyl EM1 (1:1 Glucose: 

Glycerol). 

 

The results from the FTIR analyses demonstrate that 

the 1:1 glucose-glycerol NADES mixture (EM1) is effective 

in extracting chlorophyll from C. racemosa. The FTIR 

spectrum confirmed the presence of key functional groups 

associated with chlorophyll, such as O-H, C-H, and C=O, 

validating the extraction process. The use of NADES for 

chlorophyll extraction offers several advantages over 

conventional solvents. NADES are environmentally friendly, 

non-toxic, and biodegradable, making them a sustainable 

alternative for bioactive compound extraction. The 

successful extraction of chlorophyll using the 1:1 glucose-

glycerol NADES mixture highlights its potential for large-

scale applications in various industries, including 

pharmaceuticals, food, and cosmetics. 

 

FTIR Analysis of Chlorophyll Extract Using 1:2 Glucose-

Glycerol NADES (EM2) 

The FTIR spectrum of the chlorophyll extract using a 

1:2 glucose-glycerol NADES mixture (EM2) revealed several 

significant peaks, indicating the presence of functional 

groups associated with chlorophyll. The strong and broad 

peak at 3268.88cm⁻¹ is indicative of O-H stretching 

vibrations, which are typical for hydroxyl groups found in 

chlorophyll molecules, suggesting the presence of alcohols 

or phenols in the extracted compound. Additionally, the 

peaks at 2943.70, 2886.65, and 2924.27cm⁻¹ correspond to 

C-H stretching vibrations, associated with the methylene 

(CH₂) and methyl (CH₃) groups present in the chlorophyll 

structure. Furthermore, the peak at 1641.57cm⁻¹ is 

characteristic of C=O stretching vibrations, typically 

associated with carbonyl groups such as ketones or 

aldehydes, which are present in the chlorophyll molecule. 

 

 
 
Fig. 2: The FTIR spectra of the extracted chlorophyl EM2 (1:2 Glucose: 

Glycerol). 

 

The results from the FTIR analyses demonstrate that 

the 1:2 glucose-glycerol NADES mixture (EM2) is highly 

effective in extracting chlorophyll from C. racemosa. The 

FTIR spectrum confirmed the presence of key functional 

groups associated with chlorophyll, such as O-H, C-H, and 

C=O, validating the extraction process. The use of NADES 

for chlorophyll extraction offers several advantages over 

conventional solvents. NADES are environmentally friendly, 

non-toxic, and biodegradable, making them a sustainable 

alternative for bioactive compound extraction. The 

successful extraction of chlorophyll using the 1:2 glucose-

glycerol NADES mixture highlights its potential for large-

scale applications in various industries, including 

pharmaceuticals, food, and cosmetics. 

Further research could explore optimizing the 

NADES composition to enhance extraction efficiency 

and investigate the scalability of this method for 

industrial applications. Additionally, the potential of 

other NADES mixtures for extracting different bioactive 

compounds from various natural sources could be 

studied to expand the application scope of this 

sustainable extraction method. 

 

FTIR Analysis of Chlorophyll Extract Using 1:3 Glucose-

Glycerol NADES (EM3) 

The FTIR spectrum of the chlorophyll extract using a 

1:3 glucose-glycerol NADES mixture (EM3) revealed several 

significant peaks, indicating the presence of functional 

groups associated with chlorophyll. The key FTIR peaks 

and their assignments include the O-H stretching vibration, 

indicated by the peak at 3270.30cm⁻¹, which is typical for 

hydroxyl groups found in chlorophyll molecules and 

suggests the presence of alcohols or phenols in the 

extracted compound. Additionally, the peaks at 2940.85, 

2888.08, and 2924.27cm⁻¹ corresponded to C-H stretching 

vibrations, associated with the methylene (CH₂) and methyl 

(CH₃) groups present in the chlorophyll structure. 
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Furthermore, the peak at 1645.85cm⁻¹ was characteristic of 

C=O stretching vibrations, typically associated with 

carbonyl groups such as ketones or aldehydes, which are 

present in the chlorophyll molecule. 

 

 
 
Fig. 3: The FTIR spectra of the extracted chlorophyll EM3 (1:3 Glucose: 

Glycerol). 

 

The results from the FTIR analyses demonstrated that 

the 1:3 glucose-glycerol NADES mixture (EM3) was highly 

effective in extracting chlorophyll from C. racemosa. The 

FTIR spectrum confirmed the presence of key functional 

groups associated with chlorophyll, such as O-H, C-H, 

and C=O, validating the extraction process. The use of 

NADES for chlorophyll extraction offered several 

advantages over conventional solvents. NADES were 

environmentally friendly, non-toxic, and biodegradable, 

making them a sustainable alternative for bioactive 

compound extraction (Palos-Hernández et al., 2022). The 

successful extraction of chlorophyll using the 1:3 glucose-

glycerol NADES mixture highlighted its potential for 

large-scale applications in various industries, including 

pharmaceuticals, food, and cosmetics (Palos-Hernández 

et al., 2022). 

Further research could explore optimizing the 

NADES composition to enhance extraction efficiency 

and investigate the scalability of this method for 

industrial applications. Additionally, the potential of 

other NADES mixtures for extracting different bioactive 

compounds from various natural sources could be 

studied to expand the application scope of this 

sustainable extraction method. 

The FTIR spectra of the NADES samples (EM1, EM2, 

and EM3) exhibit consistent peaks corresponding to 

functional groups like O–H, C–H, and C–O, which are 

indicative of interactions between glucose and glycerol 

(Liu et al., 2016). As the glycerol content increases from 

EM1 to EM3, there is a noticeable rise in the intensity and 

area of specific peaks related to O–H and C–O stretching, 

suggesting stronger hydrogen bonding and more robust 

interactions between the components (Liu et al., 2016). 

This observation aligns with previous studies 

emphasizing the importance of hydrogen bonding in the 

formation and stability of NADES (Liu et al., 2016; Liu et 

al., 2018). The presence of intermolecular hydrogen 

bonding in NADES has been confirmed through FTIR and 

NMR analysis (Abdallah et al., 2022; Smirnov et al., 2020). 

Additionally, the review by highlights that in a NADES 

matrix, functional groups like hydroxyl, carboxylic, and 

amine groups can form a hydrogen-bonding network via 

intermolecular interactions, influencing the 

physicochemical environment (Liu et al., 2018). The 

spectroscopic analysis in 's study supports the presence 

of hydrogen bonding interactions in NADES due to the 

hydroxyl groups (-OH) in the components (Zain et al., 

2021). Furthermore, the NOESY experiments in the 1 

HNMR analysis of NADES by demonstrate a well-

organized molecular structure controlled by extensive 

hydrogen bonding between the molecules (González et 

al., 2017). The study by also notes the existence of 

hydrogen bonds in NADES, particularly involving 

hydroxyl, carboxylic, and amine groups, which are 

abundant in these solvents (Dai et al., 2013). This 

observation is consistent with previous studies that have 

demonstrated the significance of hydrogen bonding in 

the formation and stability of NADES (Dai et al., 2013; 

Paiva et al., 2014). 

The variation in peak intensities and areas also 

indicates that the molar ratio of glucose to glycerol 

significantly influences the structural properties of the 

NADES. For example, the broad and intense peaks in the 

range of 2883.80cm⁻¹ to 3304.53cm⁻¹ are indicative of 

extensive hydrogen bonding networks, which are essential 

for the solvent's functionality and effectiveness (Smith et 

al., 2015). Additionally, the strong peaks observed at 

1038.28cm⁻¹ and 1092.48cm⁻¹ for EM1, and similar peaks 

for EM2 and EM3, further confirm the presence of 

significant C–O stretching vibrations, which play a crucial 

role in the solvent's properties (Zhang et al., 2012). The 

data also aligns with the findings of Abbott et al. (2004), 

who reported that the interactions within NADES are 

primarily governed by hydrogen bonding and van der 

Waals forces. Overall, the FTIR analysis provides valuable 

insights into the structural characteristics and interactions 

within the glucose-glycerol-water NADES, highlighting the 

importance of the molar ratios in determining the 

properties and potential applications of these solvents. 

The study focused on preparing and characterizing 

Natural Deep Eutectic Solvents (NADES) composed of 

glucose and glycerol mixed with water (40% w/w) in 

various molar ratios: EM1 (1:1), EM2 (1:2), and EM3 (1:3). 

The FTIR analysis of these NADES mixtures revealed 

significant peaks corresponding to functional groups such 

as O–H, C–H, and C–O, which are indicative of interactions 

between glucose and glycerol. The results demonstrate 

that the molar ratio of glucose to glycerol substantially 

influences the structural properties and interactions within 

the NADES. The presence of broad and intense peaks in 

the O–H stretching region, particularly as the glycerol 

content increases, suggests enhanced hydrogen bonding 

networks, which are essential for the solvent's stability and 

functionality. Peaks associated with C–O stretching further 

confirm the robust interactions within the mixtures. These 
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findings align with previous studies highlighting the 

significance of hydrogen bonding and van der Waals 

forces in NADES.  

The insights gained from FTIR analysis underscore the 

potential of NADES for various applications, particularly in 

green technology and sustainable chemical processes. 

NADES have been shown to exhibit clear hydrogen 

bonding between components (Dai et al., 2013). The ability 

to tailor the properties of NADES by adjusting the molar 

ratios of their components opens up opportunities for 

their use in diverse fields such as biomass valorization, 

food waste extraction, and bioactive compound recovery 

(Kalhor & Ghandi, 2019; Ozkan, 2023; González‐Laredo et 

al., 2023). The utilization of NADES in the extraction of 

phenolic compounds, flavonoids, and bioactives from 

various sources showcases their versatility and efficiency in 

extraction processes (Oliva et al., 2024; Vo et al., 2023; 

Ivanović et al., 2022). Moreover, the formation of NADES 

through hydrogen bonding interactions between 

hydrogen bond donors and acceptors highlights their 

unique properties, including lower melting points and 

enhanced solubility (Jauregi et al., 2024; Caviglia et al., 

2024). Overall, the research on NADES demonstrates their 

potential as green and sustainable solvents with wide-

ranging applications in various industries, highlighting 

their role in advancing environmentally friendly practices 

and processes (Wu et al., 2022; Gómez-Urios et al., 2022). 

The ability to modulate the properties of NADES through 

FTIR analysis and understand their structural characteristics 

further enhances their attractiveness for use in green 

chemistry initiatives and sustainable product development 

(Dai et al., 2013). 

 

Conclusion 

The glucose-glycerol-water NADES exhibit promising 

characteristics influenced by their molar ratios, which 

dictate the extent of hydrogen bonding and structural 

interactions. Future research could explore the practical 

applications of these solvents in different fields, leveraging 

their environmentally friendly properties and effectiveness 

as green solvents. 
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