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ABSTRACT  Article History 
Probiotics, live microorganisms conferring health benefits when administered in adequate 
amounts, are increasingly explored as feed supplements to enhance intestinal health, 
productivity, and animal welfare. This study aimed to evaluate the probiotic potential of 
Kluyveromyces marxianus as a feed additive through in vitro assessments. The strain, 
preserved in YPD medium and molecularly identified via ITS gene sequencing using the BLAST 
algorithm, was confirmed as Kluyveromyces marxianus (strain CLARA-E). The yeast’s resilience 
to environmental stressors, including temperature, pH, bile salts, and high sodium chloride 
concentrations, was tested, alongside its glucose fermentation capacity. Results indicated 
optimal survival at pH 5.6, 0.1% (w/v) bile salts, and 43°C, with notable tolerance to elevated 
NaCl levels. Glucose fermentation was confirmed by gas production in Durham tubes. These 
findings suggest that K. marxianus CLARA-E exhibits promising probiotic properties, such as 
stress tolerance and metabolic activity, positioning it as a potential feed additive to modulate 
intestinal microbiota and enhance immune responses. However, further in vivo studies are 
necessary to validate its efficacy and beneficial effects in animal models. This research 
underscores the potential of native microbial strains in developing sustainable alternatives for 
animal nutrition and health. 
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INTRODUCTION 

 
 Probiotics are defined as live microorganisms that, 
when administered in appropriate concentrations, confer 
health benefits to the host (Konieczka et al., 2023). In 
animal nutrition, probiotics play a crucial role in enhancing 
gut health, improving feed efficiency, and promoting 
overall animal well-being. They achieve these benefits 
through mechanisms such as competitive exclusion of 
pathogens, reinforcement of the intestinal epithelial 
barrier, modulation of immune responses, and production 
of bioactive compounds, including vitamins and 
antioxidants (Latif et al., 2023; Yarullina et al., 2024). As a 
result, probiotics have been widely studied as alternatives 
to antibiotics in livestock production, particularly in the 

context of growing concerns about antimicrobial resistance 
and sustainable animal husbandry practices (Thakur et al., 
2016; Lee et al., 2022). 
 Among the microorganisms used as probiotics, 
bacteria—such as Lactobacillus, Bifidobacterium, and 
Bacillus—have been extensively investigated, while 
probiotic yeasts, including Saccharomyces cerevisiae and K. 
marxianus, have gained increasing attention due to their 
unique properties (Baralić et al., 2023; Coniglio, et al., 2023; 
Tullio, 2024). Yeasts offer several advantages over bacterial 
probiotics, including their ability to tolerate harsh 
gastrointestinal conditions, produce a diverse enzyme 
profile, detoxify mycotoxins, and resist antibiotic - induced 
disruptions of the gut microbiota (López Barreto et al., 
2021; Alvarez et al., 2024). Additionally, yeasts serve as   
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valuable protein sources in animal feed, contributing to 
improved digestive efficiency and enhanced animal 
performance (Lu et al., 2024; Reina-Posso & Gonzales, 
2025). 
 K. marxianus is a thermotolerant yeast with rapid 
growth kinetics, a broad substrate utilization spectrum, 
and a well-established record of safety, being classified as 
Generally Recognized as Safe (GRAS) by the U.S. Food and 
Drug Administration and included in the Qualified 
Presumption of Safety (QPS) list by the European Food 
Safety Authority (Varela et al., 2017; Timmermans et al., 
2023). Recent studies suggest that K. marxianus possesses 
probiotic potential, demonstrating antimicrobial activity 
against enteric pathogens, immunomodulatory effects, 
and the ability to enhance intestinal integrity in animal 
models (Marcišauskas et al., 2019; Cerutti Martellet et al., 
2023). Furthermore, its fermentative capacity and 
production of short-chain fatty acids and bioactive 
peptides make it a promising candidate for improving 
rumen function and overall livestock productivity (Fadda 
et al., 2017). Despite these promising findings, the 
probiotic application of K. marxianus in animal nutrition 
remains underexplored, and key aspects of its 
physiological adaptability, including its tolerance to 
stressors such as temperature fluctuations, acidic 
environments, bile salts, and high NaCl concentrations, 
require further investigation (Liu et al., 2021). 
 Given the growing interest in alternative probiotics 
and the need for robust candidates capable of thriving in 
the gastrointestinal environment, this study aimed to 
evaluate the probiotic potential of K. marxianus for animal 
nutrition. Specifically, we assessed its tolerance to 
physiological stressors and its fermentative performance, 
key determinants of its viability as a feed additive. Our 
findings provide new insights into the resilience and 
functional properties of K. marxianus, contributing to the 
development of novel probiotic strategies for sustainable 
and efficient animal production. 
 
MATERIALS & METHODS 

 
Ethical Approval 
 All experiments involving the use of animals were 
approved by the Central Bioethics Committee of the 
University of Córdoba (Colombia), during the session of 
the Technical Knowledge Board for Veterinary Medicine 
and Animal Science, held on March 21, 2024, as recorded 
in Minute No. 002. 
 
Study Area 
 Rumen content samples were collected at the 
Turipaná Research Center of AGROSAVIA, located at 
8°50'79" N and 75°47'58" W in the municipality of Cereté, 
department of Córdoba, Colombia (Doria-Ramos et al., 
2020). For this study, three Romo Sinuano breed cattle 
with rumen fistulas were selected. These animals were fed 
forage and corn silage, which are typical dietary 
components in Córdoba, Colombia. To perform the 
respective isolations, the samples were stored in a portable 
plastic cooler at 5°C and transported to the Biotechnology 
Laboratory (GRUBIODEQ) at the Department of Chemistry 

and the Department of Biology of the Universidad de 
Córdoba (8°47′037″ N; 75°50′51″ W, 15 masl) in Montería, 
Colombia (Fig. 1) (Pompelli et al., 2019). 
 
Isolation and Preservation of the Strain 
 Rumen content samples were serially diluted using a 
saline solution (0.85% (w/v) NaCl). The resulting dilutions 
were plated on peptone dextrose agar (YPD), prepared 
with 20g of peptone, 10g of yeast extract, and 20g of 
glucose per liter of distilled water. The plates were 
incubated at 30°C for 24 to 48hours (Ullah et al., 2023). The 
isolated yeast strain was preserved in the GRUBIODEQ 
laboratory strain bank in YPD broth (1% (w/v) yeast extract, 
2% (w/v) peptone, 2% glucose, and 30% (w/v) glycerol) at 
5°C until further use. 
 
Yeast Growth under Stress Conditions 
 For all experiments, an initial culture of yeast grown in 
YPD medium for 24 hours at 30°C was used as the 
inoculum, adjusted to a final concentration of 1x10⁸CFU 
mL⁻¹ (López Barreto et al., 2021). Growth was monitored by 
counting viable cells using the serial dilution technique. 
This method involved progressively diluting an aliquot of 
the initial culture in saline solution (0.85% (w/v) NaCl), 
preparing dilutions from 10⁻¹ to 10⁻⁸. Then, 100µL of each 
dilution was plated on YPD agar and incubated at 30°C for 
24hours (Dong et al., 2025). Colony-forming units (CFU) 
were counted on plates with 30 to 300 colonies, ensuring 
the accuracy of the count. In vitro tests were performed in 
triplicate and are detailed below. 
 
Growth at Different pH Levels 
 YPD liquid culture medium was prepared, and the pH 
was adjusted to 3.0, 4.0, 5.6, and 7.0 using a 5% 
hydrochloric acid (HCl) solution, followed by sterilization at 
15PSI and 121°C for 15min. The cultures were inoculated 
and incubated at 30°C for 24hours (Wang et al., 2024). 
Growth was assessed visually by turbidity observation after 
shaking the tubes. Viable cell counts were performed as 
described in section 2.3. The survival percentage was 
calculated using Equation 1 (Cueto-Vigil et al., 2012): 
% survival=(Log CFU treatment)/(Log CFU inoculum) x100  Ec.1 
 
Growth at Different Bile Salt Concentrations 
 YPD broth was supplemented with bile salts (Sigma-
Aldrich) at concentrations of 0.05, 0.1, 0.15, and 0.3% (w/v), 
followed by sterilization at 15PSI and 121°C for 15minutes. 
Cultures were inoculated and incubated at 30°C for 
24hours (Wang et al., 2024). Growth was evaluated visually 
by the presence or absence of turbidity, and viable cell 
counts were performed as described in section 2.3. The 
survival percentage was calculated using Equation 1. 
 
Growth at Different Temperatures 
 Cultures were inoculated into 15mL of YPD broth and 
incubated at 30, 37, and 43°C for 24hours (Wang et al., 
2024). Growth was observed visually by turbidity after 
shaking the tubes. Viable cell counts were performed to 
determine survival rates, which were compared to the 
initial inoculum, and survival percentage was calculated 
using Equation 1. 
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Fig. 1: Area of study  
 

 
Growth at Different Sodium Chloride Concentrations 
 YPD broth was supplemented with NaCl at 
concentrations of 2.0, 4.0, 7.0, and 10% (w/v) and sterilized 
at 15PSI and 121°C for 15minutes (Anuarbekova et al., 
2024). Cultures were inoculated and incubated at 30°C for 
24hours. Growth was assessed visually, and viable cell 
counts were performed to determine survival percentages 
using Equation 1. 
 
Glucose Fermentation 
 YPD broth containing 0.2% (v/v) bromocresol purple 
solution (0.5% v/v) was inoculated into Durham tubes 
and incubated at 37°C for 48hours. Glucose fermentation 
was indicated by the presence of gas in the inverted 
Durham tubes. 
 
Molecular Identification 
DNA Extraction 
 Yeast was cultured on YPD agar and incubated at 
30°C for 24hours. Biomass was collected directly from 

the plates, frozen, and ground with liquid nitrogen. 
Genomic DNA was extracted using the GeneJET™ kit 
(Thermo Fisher Scientific Inc., USA) following the 
manufacturer's instructions. 
 
Amplification of the ITS Region 
 PCR (polymerase chain reaction) was used to amplify 
the ITS region using universal primers ITS4 (5'-
TCCTCCGCTTATTGATATATGC-3') and ITS3 (5′-
GCATCGATGAAGAACGCAGC-3′) from Sigma-Aldrich 
(Sevgili et al., 2023). The reaction mixture (50µL) contained 
25µL of DreamTaq Hot Start PCR Master Mix, 1µL of each 
primer (10mM), 2µL of DNA (~157ng µL-1), and molecular-
grade water. PCR conditions included initial denaturation 
(5min at 95°C), 30cycles of denaturation (30s at 95°C), 
annealing (40s at 60°C), extension (1min at 72°C), and a 
final extension (10min at 72°C). Amplicons were verified by 
1% agarose gel electrophoresis and visualized under UV 
light (Enduro GDS Labnet, Tewksbury, MA, USA). The 
purification and sequencing of the fragment was carried 
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out through the Sequencing and Molecular Analysis 
Service (SSiGMol), of the Institute of Genetics of the 
National University of Colombia. 
 
Phylogenetic Analysis 
 Sequences were analyzed using 4Peaks v1.8 and 
compared with GenBank sequences via BLAST. Multiple 
sequence alignment was performed using ClustalW in 
MEGA11 (Tamura et al., 2021), and a phylogenetic tree was 
generated using the maximum likelihood method with 
1000 bootstrap replicates. 
 
Yeast Growth in a Mango-Based Medium 
Growth Assessment 
 Mango-based liquid media were prepared at different 
pulp concentrations (5, 10, 15, 20, and 25% w/v), 
supplemented with 1% yeast extract and 1.5% peptone. 
Cultures were incubated in Erlenmeyer flasks at 2.2VVM 
aeration and 150rpm, using a 0.2µm filter for 
contamination control (Lara et al., 2010). Growth was 
assessed macroscopically, microscopically, and through 
viable cell counts at 24, 48, and 72hours. 
 
Chemical Analysis of the Mango (Mangifera indica) 
Pulp Extract in the Medium 
 The chemical composition of the culture medium 
containing 10% (w/v) mango pulp, supplemented with 1% 
yeast extract and 1.5% peptone, was analyzed. Total sugar 
content was determined using the phenol-sulfuric acid 
method described by Dubois et al. (1956) (DuBois et al., 
1956), while reducing sugars were quantified following 
Miller’s method (Miller, 1959). Protein content was 
assessed via the Kjeldahl method (Di Marzo et al., 2021), 
and ash content was measured according to the AOAC 
standard method 942.05 (Helrich, 1990). Mineral 
composition was analyzed as follows: sodium (Na), 
potassium (K), magnesium (Mg), and calcium (Ca) were 
determined according to ICONTEC standard NTC 5349-
2016; copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) 
following NTC 5526-2024; sulfur (S) according to NTC 
5402-2006; and phosphorus (P) in accordance with NTC 
5350-2020. Additionally, moisture content and pH were 
measured following AOAC method 930.15/90. All analyses 
were conducted at the Soil and Animal Nutrition 
Laboratory of the Universidad de Córdoba. 
 
Experimental Design and Statistical Analysis 
 A completely randomized design (CRD) was used with 
a 5x3 factorial arrangement and three replicates per 
condition. Data were analyzed via ANOVA using SPSS v20, 
and Tukey's test was applied (P<0.05). Graphs were 
created using SigmaPlot v12.0. 
 
RESULTS 

 
Yeast Growth under Stress Conditions 
 Fig. 1 illustrates the percentage survival of K. 
marxianus under various stress conditions, demonstrating 
its adaptability and resilience. In acidic pH conditions (Fig. 
2A), K. marxianus exhibited robust growth, with the highest 
survival rate observed at pH 5.6 (94.52±0.71%), followed 

by pH 4.0 (94.36±0.58%), pH 3.0 (91.51±0.68%), and pH 7.0 
(90.95±0.95%). Statistical analysis revealed significant 
differences (P<0.05) between pH 7.0 and pH 4.0/5.6, while 
pH 3.0 showed no significant differences compared to 
other pH levels, indicating the yeast’s broad pH tolerance. 
 In bile salt tolerance assays (Fig. 2B), K. marxianus 
demonstrated significant growth variations depending on 
bile salt concentration. Optimal growth was observed at 
low concentrations (0.05% and 0.1%), with survival rates of 
76.29±0.56% and 74.94±0.40% at 0.15% and 0.3%, 
respectively. No significant differences were detected 
between 0.15% and 0.3%, suggesting the yeast’s ability to 
adapt to higher bile salt concentrations. 
 Temperature tolerance tests (Fig. 2C) revealed that K. 
marxianus thrived across a range of temperatures, with the 
highest survival rate at 43°C (97.45±0.59%), followed by 
37°C (95.7±0.29%) and 30°C (94.63±0.38%). Significant 
differences (P<0.05) were observed between 30°C and 
43°C, while 37°C showed no significant differences 
compared to other temperatures, highlighting the yeast’s 
thermotolerance. 
 In sodium chloride tolerance assays (Fig. 2D), K. 
marxianus exhibited optimal growth at 2% NaCl 
(92.46±0.40%), with survival decreasing to 42.59±0.32% 
at 10% NaCl. Significant differences (P<0.05) were 
observed between 2% and higher NaCl concentrations, 
although no significant differences were detected 
between 4% and 7%, indicating the yeast’s ability to 
adapt to elevated salt concentrations. 
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Fig. 2: Survival percentage of K. marxianus (strain CLARA-E) under varying 
stress conditions: (A) different pH levels, (B) bile salt concentrations, (C) 
temperatures, and (D) sodium chloride concentrations. Lowercase letters 
above the bars denote statistically significant differences (P<0.05). Results 
are based on triplicate experiments (n=3), with error bars representing the 
standard error of the mean. 
 
 These results collectively underscore the resilience of 
K. marxianus under diverse stress conditions, supporting 
its potential as a robust probiotic candidate for industrial 
and animal feed applications. 
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Molecular Identification 
 The ITS sequence of strain CLARA-E, with a size of 
405bp, was analyzed using the GenBank (NCBI) megablast 
algorithm against the Fungi-type ITS database. The 
alignment revealed a highly significant match (E-
value<10⁻¹⁵⁷), with a maximum alignment score of 551, 
query coverage exceeding 350 nucleotides, and 93% 
identity with the reference sequence NC_036029.1, 
corresponding to chromosome 5 of K marxianus DMKU3-
1042. The sequence of strain CLARA-E has been deposited 
in the NCBI GenBank database under the accession code 
PP726659.1 (available at: 
https://www.ncbi.nlm.nih.gov/nuccore/PP726659.1, 
accessed on January 9, 2025. 
 Phylogenetic analysis further confirmed the 
classification of the wild yeast strain within the K. 
marxianus clade (Fig. 3), supporting its identification as a 
member of this species. These molecular findings validate 
the strain’s taxonomic placement and provide a foundation 
for its characterization as a potential probiotic candidate. 
 

 
 
Fig. 3: Phylogenetic tree of the K. marxianus strain CLARA-E (•) and 
related sequences retrieved from the NCBI GenBank database. The tree 
illustrates the taxonomic placement of strain CLARA-E within the K. 
marxianus clade, based on ITS sequence analysis. Bootstrap values (where 
applicable) indicate the robustness of the nodes, and the scale bar 
represents genetic distance. 
 
Assessment of K. marxianus Growth in a Mango 
(Mangifera indica)-Based Culture Medium 
 Table 1 presents the growth of K. marxianus expressed 
in colony-forming units per milliliter (CFU mL⁻¹) across 
varying concentrations of mango pulp (5%, 10%, 15%, 
20%, and 25% w/v) in the culture medium. 
 
Table 1: Growth of K. marxianus (CFU mL⁻¹) at varying concentrations of 
mango pulp in the culture medium and different incubation times. 
Mango Pulp  
(% w/v) 

24Hours  
(CFU mL⁻¹) 

48Hours  
(CFU mL⁻¹) 

72Hours  
(CFU mL⁻¹) 

5% 5.0×10⁸±1.8×10⁸ᵃ 2.2×10⁹±6.9×10⁸ᵃ 3.0×10⁹±0. 0ᵃ 
10% 5.0×10⁸±1.5×10⁸ᵃ 2.4×10¹⁰±1.3×10¹⁰ᵇ 3.7×10⁹±1.8×10⁹ᵃ 
15% 4.3×10⁸±8.8×10⁷ᵃ 4.7×10⁹±8.8×10⁸ᵃ 4.7×10⁹±8.8×10⁸ᵃ 
20% 1.0×10⁸±3.3×10⁶ᵃ 8.0×10⁸±5.8×10⁷ᵃ 5.0×10⁸±2.1×10⁸ᵃ 
25% 6.3×10⁸±8.8×10⁷ᵃ 7.0×10⁷±5.8×10⁶ᵃ 5.0×10⁷±5.8×10⁶ᵃ 
* Data are presented as mean ± standard deviation of triplicate experiments 
(n=3). Different superscript letters within rows and columns indicate 
significant differences (Tukey’s test, P<0.05). 
 
 At 5% (w/v) mango pulp, the cell density was 
5.0×10⁸±1.8×10⁸CFU mL⁻¹ at 24hours, increasing to 
2.2×10⁹±6.9×10⁸CFU mL⁻¹ at 48hours and reaching 
3.0×10⁹±0.0CFU mL⁻¹ at 72hours. Although growth was 
gradual, no significant differences were observed between 

24 and 48hours, and the increase from 48 to 72hours was 
minimal (Table 1). 
 In the medium with 10% (w/v) mango pulp, initial 
growth at 24hours (5.0×10⁸±1.5×10⁸CFU mL⁻¹) was similar 
to that at 5% However, a marked increase to 
2.4×10¹⁰±1.3×10¹⁰CFU mL⁻¹ was observed at 48hours, 
representing a significant difference compared to other 
concentrations (5%, 15%, 20%, and 25% w/v) and 
incubation times (24 and 72hours). By 72hours, cell density 
decreased to 3.7×10⁹±1.8×10⁹CFU mL⁻¹, with no 
significant differences between 24 and 72hours (Table 1). 
 At 15% (w/v) mango pulp, growth was moderate, with 
cell densities of 4.3×10⁸±8.8×10⁷CFU mL⁻¹ at 24hours, 
increasing to 4.7×10⁹±8.8×10⁸CFU mL⁻¹ at 48 and 72hours, 
where it remained stable. For 20% (w/v) mango pulp, initial 
growth was limited (1.0×10⁸±3.3×10⁶CFU mL⁻¹ at 
24hours), stabilizing at 48hours (8.0×10⁸±5.8×10⁷CFU 
mL⁻¹) and decreasing at 72hours (5.0×10⁸±2.1×10⁸CFU 
mL⁻¹). At 25% (w/v), initial growth was 
6.3×10⁸±8.8×10⁷CFU mL⁻¹ at 24hours, declining to 
7.0×10⁷±5.8×10⁶CFU mL⁻¹ at 48hours and 
5.0×10⁷±5.8×10⁶CFU mL⁻¹ at 72hours. No significant 
differences (P>0.05) were observed between incubation 
times (24, 48, and 72hours) for mango pulp concentrations 
of 15%, 20%, and 25% (Table 1). 
 These results indicate that K. marxianus exhibits 
optimal growth at 10% (w/v) mango pulp, with significant 
biomass production at 48 hours, while higher 
concentrations (15%–25%) result in reduced or stabilized 
growth, suggesting potential substrate inhibition at 
elevated pulp levels. 
 Considering that the culture medium prepared with 
10% (w/v) mango pulp, supplemented with 1% (w/v) yeast 
extract and 1.5% (w/v) peptone, yielded the optimal 
growth of K. marxianus, a chemical analysis of the medium 
was conducted. The results of this analysis are presented in 
Table 2. This evaluation aimed to characterize the 
nutritional composition of the medium, providing insights 
into the factors contributing to the enhanced growth of K. 
marxianus under these conditions. 
 
Table 2: Chemical composition of the culture medium: 10% (w/v) mango 
pulp, 1% (w/v) yeast extract, and 1.5% (w/v) peptone. 
Parameter Concentration Unit 
Total Sugars 10.3 g 
Reducing Sugars 2.1 g L⁻¹ 
Proteins 2.0 % 
Ashes 2.6 % 
Calcium (Ca) 44.0 mg L⁻¹ 
Magnesium (Mg) 11.0 mg L⁻¹ 
Sodium (Na) 265.0 mg L⁻¹ 
Potassium (K) 820.0 mg L⁻¹ 
Copper (Cu) 0.05 mg L⁻¹ 
Zinc (Zn) 1.4 mg L⁻¹ 
Iron (Fe) 0.3 mg L⁻¹ 
Manganese (Mn) 0.05 mg L⁻¹ 
Sulfur (S) 28.6 mg L⁻¹ 
Phosphorus (P) 3.0 mg L⁻¹ 
pH 5.5 pH units 

 
 Table 2 shows that mango is a fruit rich in soluble 
carbohydrates (10.3g), making it a valuable carbon source. 
It contains sugars such as glucose, fructose, and sucrose, 
along with other carbohydrates like starch and pectins. 
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Additionally, the protein content reported in this study 
(2%) is relatively high, providing sufficient nitrogen for 
yeast growth. The ash content of mango pulp (2.6%) is also 
considerable, likely due to its high mineral composition, 
including Ca, Na, K and Mg, as well as trace elements. 
 
DISCUSSION 

 
Yeast Growth under Stress Conditions 
 While the majority of probiotic research has 
historically focused on bacterial systems, recent studies 
have highlighted the potential of certain yeast species, 
such as K. marxianus, as promising probiotic candidates 
(Hu et al., 2023; Buonanno et al., 2025). Yeasts have 
emerged as model organisms in various biological 
processes, and their derivatives or by-products have 
garnered increasing scientific interest (Staniszewski & 
Kordowska-Wiater, 2021; Carrera Marcolin et al., 2024). 
Despite their critical role in maintaining gastrointestinal 
tract balance, particularly through antagonistic 
interactions with harmful microbiota, yeasts have been 
comparatively understudied as probiotics relative to their 
bacterial counterparts (Zahoor et al., 2021). A key criterion 
for evaluating a microorganism’s probiotic potential is its 
ability to adapt to the specific conditions of the 
gastrointestinal tract (Menezes et al., 2020). To this end, 
the K marxianus strain CLARA-E was investigated for its 
tolerance to diverse stressors, including varying 
temperatures, high bile salt concentrations, sodium 
chloride, and acidic pH. One of the primary challenges for 
probiotic yeasts is their capacity to withstand the low pH 
conditions typical of the stomach environment (Pereira et 
al., 2012; Alkalbani et al., 2022a; 2022b). Survival in acidic 
pH, such as that found in gastric juice, is therefore a 
critical attribute for probiotic selection (Pereira et al., 
2012). In this study, K. marxianus demonstrated no 
significant differences in average growth across a pH 
range of 3.0 to 7.0, maintaining a consistent population 
magnitude of 10⁸ CFU/mL-1. This indicates robust pH 
tolerance, aligning with findings by Merchán et al. (2020), 
who reported similar high resistance in K. marxianus. Galli 
et al. (2022) further corroborated these results, noting the 
strain’s viability after exposure to acidic conditions. 
Similarly, Nag et al., (2023) observed that K. marxianus 
strain PCH397 exhibited a survival capacity of 78–99% 
under low pH conditions. Fadda et al. (2017) and Moradi 
et al. (2018) also reported high survival rates for K. 
marxianus strains S97, under simulated gastric conditions 
(pH 3.0), with survival percentages of 83%. The ability of 
yeasts to tolerate low pH is attributed to a regulatory 
mechanism involving ATPase in the cytoplasmic 
membrane, which establishes an electrochemical proton 
gradient. This gradient facilitates secondary solute 
transport, helping to maintain intracellular pH near 
neutrality (Arias et al., 2017). Additionally, yeasts employ 
strategies such as cell wall adjustment and activation of 
cell wall integrity pathways to resist acidic and general 
stress conditions (Lucena et al., 2020).  
 The tolerance of K. marxianus to low pH is particularly 
relevant for industrial applications, as acidic conditions are 

common in fermentation and probiotic production 
processes. The strain’s ability to thrive across a wide pH 
range enhances its potential efficacy in the gastrointestinal 
tract, where pH fluctuations are significant, making it a 
promising candidate for probiotic roduct development, 
particularly in animal feed.  
 In addition to acidic pH tolerance, resistance to bile 
salts is another critical factor in assessing probiotic 
potential (Alkalbani et al., 2022a). Bile salts, which act as 
lipid emulsifiers, are released into the duodenum post-
ingestion and possess inherent antimicrobial properties 
(Urdaneta & Casadesús, 2017). To reach the intestinal tract 
in a viable state, ingested microorganisms must withstand 
bile salt exposure (Shruthi et al., 2022).  
 In this study, the CLARA-E strain of K. marxianus 
demonstrated excellent growth in the presence of 0.05–
0.3% (w/v) bile salts, maintaining stable viable cell counts 
and metabolic activity without inhibition. The highest 
survival rate (94.74%) was observed at 0.1% bile salt 
concentration, though the strain also grew effectively at 
0.3% (w/v), a concentration comparable to average 
intestinal bile levels (Shih-An & Jui, 2020). These findings 
align with those of Lama & Tamang (2022) and Merchán 
et al., (2020), who reported similar bile salt resistance in 
K. marxianus. Fadda et al. (2017) further noted survival 
rates exceeding 95% at 0.3% (w/v) bile salts. Bile salt 
resistance in yeasts is mediated by bile salt hydrolase 
activity, which mitigates the toxic effects of conjugated 
bile salts (Liu et al., 2012). Additionally, ATP-binding 
proteins in yeast membranes facilitate the translocation 
of conjugated bile salts, while the accumulation of 
polyols and glycerol helps regulate osmotic pressure, 
further enhancing bile salt tolerance (López et al., 2015; 
Arias et al., 2017).  
 Temperature is another critical factor influencing 
microbial growth, as it affects sugar metabolism, 
reproduction and cellular development (Manovacía 
Moreno et al., 2008). For probiotics, growth at 37°C 
(normal body temperature) is essential (Gil-Rodríguez et 
al., 2015; Menezes et al., 2020; Shih-An & Jui, 2020; 
Vergara Alvarez et al., 2023), but tolerance to elevated 
temperatures (e.g., 39°C and 42°C) is also advantageous 
(Vergara Alvarez et al., 2023). The CLARA-E strain of K. 
marxianus exhibited significant growth at 30°C, 37°C, and 
43°C, maintaining stable population levels relative to the 
initial inoculum. This thermotolerance is particularly 
noteworthy, as lactic acid bacteria (LAB) typically exhibit 
greater heat resistance than yeasts (Romero-Gil et al., 
2013). Similar findings were reported by Menezes et al., 
(2020) and Lama & Tamang (2022), underscoring the 
strain’s adaptability to varying temperatures.  
 Salt tolerance is another desirable trait for probiotics, 
as sodium chloride is commonly used in food 
preservation and flavor enhancement (Zeng et al., 2019; 
Alkalbani et al., 2022b). The CLARA-E strain demonstrated 
tolerance to NaCl concentrations of 2.0%, 4.0%, 7.0%, and 
10% (w/v), though growth rates declined at higher 
concentrations (7.0% and 10% w/v) (Fig. 1D). Most 
microorganisms adapt to osmotic stress through 
mechanically rigid cell walls, and the CLARA-E strain’s 
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ability to tolerate up to 7% NaCl suggests a capacity for 
osmotic adjustment (Lara Mantilla & Burgos Portacio, 
2012). Under hypertonic conditions, yeasts undergo rapid 
dehydration due to water loss from the cytosol, followed 
by compensatory mechanisms such as vacuolar ion 
accumulation and passive solute movement to maintain 
cellular hydration (Serrano, 1996; Tao et al., 1999; 
Blomberg, 2000). Stress resistance mechanisms, including 
increased intracellular glycerol levels and the induction of 
protective proteins, further support survival and growth 
under osmotic stress (Rep et al., 2000).  
 Finally, K. marxianus demonstrated the ability to 
ferment glucose without gas production during 24hour 
incubation, a valuable trait for probiotic applications. Gas 
production by probiotics can cause digestive discomfort in 
hosts and represents an energy loss, as the gas is derived 
from substrates that could otherwise be metabolized for 
energy (Arias et al., 2017). The strain’s efficient glucose 
assimilation without gas production underscores its 
potential as a safe and effective probiotic. 
 
Assessment of the Growth of K. marxianus in a Mango 
(Mangifera indica)-Based Culture Medium 
 In this study, statistical analyses revealed that the 
optimal growth of K. marxianus occurred in a culture 
medium containing 10% (w/v) mango pulp, with an 
incubation time of 48hours. A decline in cell density was 
observed at 72hours, suggesting that while the 10% (w/v) 
mango pulp concentration supports robust initial growth 
up to 48hours, nutrient depletion may occur at an 
accelerated rate, leading to reduced cell density thereafter. 
Interestingly, as the concentration of mango pulp in the 
medium increased to 20% and 25% (w/v), yeast growth 
decreased. This inhibitory effect can likely be attributed to 
the high concentrations of sugars, particularly glucose and 
fructose, present in mango pulp. This observation aligns 
with studies indicating that elevated levels of reducing 
sugars in fruit-based media can suppress yeast growth 
(Lara Mantilla, 2008). 
 In mango (Mangifera indica), the carbohydrate content 
typically ranges between 16.20% and 17.18%, though this 
may vary depending on the fruit’s ripeness (Yahia et al., 
2023). High sugar concentrations can force yeasts into a 
decline phase, where populations enter a survival state 
with reduced metabolic activity due to osmotic stress. This 
can result in prolonged or even incomplete fermentations 
(Ogidi et al., 2020). These findings underscore the 
importance of carefully optimizing nutrient concentrations 
in culture media, particularly when using sugar-rich 
substrates like mango pulp, to maximize yeast growth and 
productivity in industrial applications.  
 Analysis of the chemical composition of the mango-
enriched medium (10% w/v) (Table 2), supplemented with 
yeast extract and peptone, revealed that it provides the 
essential nutrients required for optimal growth of K. 
marxianus. These nutrients include carbohydrates, 
primarily in the form of total and reducing sugars, which 
serve as an energy source (carbon source), as well as 
proteins that supply nitrogen for microbial biomass 
synthesis (Lara Mantilla, 2008; Ezugwu et al., 2023).  

 In this study, a culture medium composed of 10% 
(w/v) mango pulp, 1.0% (w/v) yeast extract, and 1.5% (w/v) 
peptone supported satisfactory growth of K. marxianus. 
This demonstrates that agricultural residues, such as 
mango pulp, can serve as effective carbon sources, 
providing essential nutrients for the growth of 
biotechnologically relevant microorganisms, with cell 
densities ranging from 10⁷ to 10¹⁰CFU mL-1. These results 
are supported by the work of Ogidi et al., (2020), who 
explored the use of various agricultural residues, including 
banana peels, pineapple, mango, peanut shells, coconut 
fiber, and walnut shells, supplemented with glucose, yeast 
extract, peptone, and minerals, for the growth of 
microorganisms such as Bacillus subtilis, Candida albicans, 
Candida tropicalis, Lactobacillus delbrueckii, and 
Streptococcus thermophilus. Their findings, which reported 
growth magnitudes of 10⁴CFU mL-1, suggest that 
agricultural residues provide essential nutrients such as 
nitrogen, carbon, and minerals, which microorganisms 
utilize for metabolite and biomass production (Fuentes-
Gutiérrez et al., 2022).  
 The use of agroindustrial waste as a low-cost raw 
material represents a promising strategy for 
transforming waste into valuable compounds. In this 
context, mangoes are particularly advantageous due to 
their rich content of carbohydrates, proteins, vitamins, 
and minerals, which can meet the nutritional 
requirements of probiotic candidate strains like K. 
marxianus (Fuentes-Gutiérrez et al., 2022).  
 Research focused on biomass production from K. 
marxianus suggests that carbohydrate-rich agricultural 
wastes are a viable and cost-effective alternative to 
conventional carbon sources. The high cost of traditional 
carbon sources remains a significant barrier to large-scale 
biomass production, making the use of by-products an 
attractive solution. Specifically, underutilized mango 
residues have the potential to add value to these materials 
while producing high-quality protein-rich biomass, which 
could be beneficial for animal feed. Additionally, mango-
derived growth factors such as citric and malic acids, along 
with essential minerals and trace elements (e.g., Mg, Ca, Fe, 
K, and Na), play critical roles in enzyme activation, cellular 
respiration, and other physiological functions (Fuentes-
Gutiérrez et al., 2022).  
 Despite the identification of essential nutrients 
required by microorganisms in ruminants, optimizing total 
yeast growth remains an ongoing research challenge. This 
is due to the need to determine the optimal types, 
quantities, and combinations of these nutrients (Villamizar-
Vargas et al., 2019). This approach not only offers a 
pathway to reduce resource waste but also generates 
valuable products from materials that would otherwise be 
discarded (Rivera et al., 2006). The results of this study 
highlight a promising avenue for sustainable biomass 
production, emphasizing the potential of agricultural 
residues as nutrient sources for microbial cultivation. This 
has significant implications for the biotechnology industry 
and agricultural waste management, paving the way for 
more sustainable and economically viable production 
processes. 
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Conclusion 
 This study highlights the potential of Kluyveromyces 
marxianus strain CLARA-E as a promising probiotic 
candidate for use as a feed additive in animal nutrition. 
The strain demonstrated robust tolerance to a range of 
environmental stressors, including acidic pH (optimal 
survival at pH 5.6), high bile salt concentrations (0.1% w/v), 
elevated temperatures (up to 43°C), and significant 
osmotic pressure from sodium chloride; additionally, the 
strain’s ability to ferment glucose without excessive gas 
production. These attributes are critical for probiotic 
viability and functionality in the gastrointestinal tract, 
where conditions can be highly variable and challenging. 
The use of mango (Mangifera indica) pulp as a cost-
effective and nutrient-rich culture medium further 
underscores the potential of agricultural residues in 
supporting microbial growth; this finding aligns with the 
growing interest in utilizing agroindustrial by-products as 
sustainable substrates for microbial cultivation, offering a 
dual benefit of waste valorization and cost reduction in 
probiotic production.  
 The stress tolerance, metabolic activity, and growth 
performance of Kluyveromyces marxianus CLARA-E 
position it as a viable candidate for modulating intestinal 
microbiota and enhancing immune responses in animals; 
however, while these in vitro results are promising, further 
in vivo studies are essential to validate the strain’s efficacy, 
safety, and beneficial effects in animal models. This 
research contributes to the growing body of evidence 
supporting the use of native microbial strains, such as 
Kluyveromyces marxianus CLARA-E, in developing 
sustainable and effective alternatives for animal nutrition 
and health. By leveraging the strain’s probiotic potential 
and the utilization of agricultural residues, this work paves 
the way for innovative approaches to improving animal 
welfare, productivity, and resource efficiency in the 
livestock industry. 
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