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ABSTRACT  Article History 

One of the main threats for coffee production is coffee leaf rust (CLR) caused by H. vastatrix. 

CLR research have predominantly focused on qualitative host-pathogen interactions, however, 

studies of quantitative aspects of the interaction of coffee and H. vastatrix are less 

documented. Therefore, this information is crucial for understanding the potential impact of 

new CLR races, coffee resistance durability and preventing new CLR outbreaks. In this 

experiment, we evaluated the aggressiveness of different populations of H. vastatrix and the 

effect on some ecophysiological parameters on coffee cv. Bourbon. Urediniospores of H. 

vastatrix were collected from coffee farms in La Convencion, Cusco. A total of 15 populations 

were obtained (from 1RS to 15 RS). The urediniospores were inoculated on coffee cv Bourbon 

in San Ramón (Chanchamayo). The aggressiveness (in term of Period of incubation, Frequency 

of infection, Latent Period and Medium latent period) and fluorescence (through OJIP analysis) 

were examined. It was recorded that a mean period of incubation, latent period and medium 

latent period for all the coffee leaf rust populations ranged from 18-20.22, 28.1-33 and 32-

38.14 days after inoculation (dds). The variation in the infection period was of 2.75-8 degrees. 

3RS were also less aggressive than 5RS. At 41 degrees, we observed that the level of 

chlorophylls fell significantly, ranging from 4.6 to 31.15%. Regarding to OJIP analysis, the 

majority of coffee leaf rust populations did not cause significant modification in the variation 

of Fv/Fm displaying a range from 0.51 to 0.73, at 41 dds. In the case of populations 9RS, 10RS, 

13RS, 14RS and 15RS, they presented significant fall in the value of Fv/Fm of 15, 27, 9, 18 and 

32% at the end compared to the first sampling. On overall, the range of PI varied from 1.69 to 

5.18. 6RS caused in significant increment of ETo/RC. 9RS, 10RS, 14RS and 15RS increased 

(P≤0.05) the value of ABS/RC in 23, 149, 74 and 108% (compared to the initial evaluation). 9RS 

showed a significant increment of TRo/RC of 23.5% in the last sampling. Finally, we conclude 

that weather conditions and plant material used in this assessment caused a rapid period of 

incubation (IP). It also detected a photosynthetic defense mechanism that consisted in the 

increment of ABS/RC, ETo/RC and TRo/RC when the levels of Fv/Fm have fallen. 
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INTRODUCTION 

 

 Coffee is a prominent commodity in global trade 

(Fromm, 2023). This crop carries considerable economic, 

cultural, and social significance worldwide (Maspul, 2023; 

Bracken  et  al.,  2023).  It  is  cultivated in over 60 countries, 
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with an estimated 25 million farmers primarily being 

smallholders (less than 5 hectares) (Bracken et al., 2023; 

Fromm, 2023). Additionally, around 125 million individuals 

globally are directly engaged in various stages of the coffee 

value chain (Fromm, 2023). Peru is the world’s seventh 

largest coffee producing countries, and coffee farms occupy 

more than 400 thousand hectares (MIDAGRI, 2013). And, it 

is present in 17 regions (MIDAGRI, 2025). One of the most 

important Peruvian region that produces coffee is Cusco, in 

fact, it depicts 8% of total coffee produced (ComexPeru, 

2023). Coffee production is hold by 223 482 of small 

farmers. Likewise, the employment generated by coffee 

production is the third part of total of agricultural 

employment (MIDAGRI, 2025). Coffee offers environmental 

services, especially when it is grown under agroforestry 

systems (Jezeer et al., 2019; Cerda et al., 2020).  

 Despite a remarkably economic, social and 

environmental importance, coffee production remains low 

in countries such as Peru (400 – 600kg ha-1) (MIDAGRI. 

2013). Crop production is subject to various forms of biotic 

stress caused by a wide range of microorganisms, 

including fungi, bacteria, and nematodes (Gull et al., 2019). 

The cultivation of Coffea arabica is especially threatened 

by different pathogenic agents, such as Hemileia vastatrix, 

which is responsible for the disease known as "coffee leaf 

rust" (CLR). This disease is considered the most destructive 

affliction impacting coffee production globally (Silva et al., 

2006; Pires et al., 2020).  

 In Peru, this fungus was first reported in the 1979s 

(Julca-Otiniano et al., 2013). Currently, studies indicate an 

incidence rate of 30% in susceptible cultivars; however, this 

can vary depending on climatic conditions and genetic 

material (Alvarado-Huamán et al., 2020; Borjas-Ventura et 

al., 2020). Between 2010 and 2013, coffee production was 

reduced by a series of outbreaks in Colombia, Costa Rica, 

Guatemala, Peru, among others. In Central America, it was 

estimated that CLR affected 50% of coffee plantations and 

reduced in 17% the employment of the area (ICO, 2013). In 

Colombia and Peru was reported a loss of 30 to 50% of 

coffee production (Avelino et al., 2015; MIDAGRI, 2013). 

Four main hypotheses have been put forward to explain 

CLR outbreaks: fungus evolution (new races), climate 

change, land use change and low coffee prices (Koutouleas 

and Collinge, 2022). 

 One of the primary strategies for controlling CLR 

involves the use of tolerant genetic material, such as 

Catimors or Sarchimors, which are derived from Caturra x 

Timor and Villa Sarchi x Timor, respectively (Julca-Otiniano 

et al., 2023). However, in personal communications with 

various small-scale farmers, it has been noted that some 

Catimor varieties are losing their tolerance to CLR. 

Consequently, developing new, tolerant genetic material is 

crucial to ensure sustained high yields. 

 New coffee genetic material, whether produced 

domestically or imported from other countries, must 

possess resistance genes against CLR. The resistance of 

coffee to CLR can be explained by Flor's theory, which 

concludes that for each resistance gene in the coffee plant, 

there is a corresponding virulence gene in the pathogen 

(Quiroga-Cardona, 2021). Therefore, it is essential to 

identify the genetic traits of the different races of CLR to 

determine which resistance genes should be incorporated 

into new cultivars. 

 CLR is capable of infecting, germinating on, and 

colonizing coffee plants due to the presence of specific 

genes known as virulence genes (v1-v9) (Rodrigues Junior 

et al., 1975), whose combinations give rise to physiological 

races. In fact, there are currently 55 known physiological 

races (Silva et al., 2022). In Peru, Julca-Otiniano et al. (2024) 

have identified the following physiological races: XXIII 

(v1,2,4,5), I (v2,5), XXIV (v2,4,5), a new race (v1,2,4,5,7,8 or 

v1,2,4,5,7,8,9), XXXV (v2,4,5,7,9) and XXXIV (v2,5,7 or 

v2,5,7,9). It is important to note that H. vastatrix has the 

ability to mutate, resulting in new races that can overcome 

the resistance of existing genetic material. Additionally, 

Quispe-Apaza et al. (2017) observed greater CLR diversity 

in Quillabamba compared to Villa Rica, suggesting that this 

genetic diversity may indicate variability in the 

pathogenicity of different CLR isolates.  

 On the other hand, aggressiveness refers to the 

pathogenic capacity of microorganisms (Rozo et al., 2012; 

Suffert et al., 2018) and can be quantified using several 

parameters, including the incubation period, latency 

period, number of sporulated lesions, and infection 

intensity (Avelino and Rivas, 2013). Regarding the 

pathogenicity or aggressiveness of pathogen isolates or 

races, Eskes (1983) reported varying degrees of 

pathogenicity among different H. vastatrix isolates. Similar 

findings were reported by Morales and Grajea (2021) in 

Honduras. Under Peruvian conditions, the aggressiveness 

of different CLR isolates is not well understood, which 

limits effective disease control.  

 The organ affected by CLR is the leaf, where it causes 

chlorosis and defoliation. Once H. vastatrix reaches the 

coffee leaf and penetrates the plant cell, it alters metabolic 

processes to create an environment conducive to its 

development. H. vastatrix is also capable of suppressing 

the plant's defense mechanisms. Coffee plants have two 

primary defense systems: the first is a surface-level defense 

involving the activation of kinases, while the second 

includes an increase in the activity of enzymes such as 

peroxidases, superoxide dismutase, and catalases 

(Talhinhas et al., 2017; Silva et al., 2022; Honorato Júnior et 

al., 2015a). The overproduction of antioxidant enzymes 

indicates an excessive generation of reactive oxygen 

species (ROS), which can potentially damage various 

cellular structures, including proteins and membranes. 

Additionally, one of the most significant processes affected 

by H. vastatrix is photosynthesis. The presence of this 

pathogen has been shown to decrease Fv/Fm, indicating 

impaired health of photosystem II (PSII). Pigment 

production is also adversely affected (Honorato Júnior et 

al., 2015a). Despite this information, further research is 

needed to better understand the extent of the damage 

caused by H. vastatrix to coffee plants.  

 The OJIP test offers a quantitative evaluation of 

fluorescence kinetics (Moreno et al., 2008) and serves as a 

valuable method for assessing the impact of specific 

pathogens on plants. This analysis evaluates the health of 

photosystem II (PSII) and the components of the electron 

transport chain during photosynthesis (Toniutti et al., 

2017). Several researchers highlight the importance of the 
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OJIP test, noting its utility in the early evaluation of plant 

responses to both biotic and abiotic stress (Ceacero et al., 

2012; Mariño, 2014; Rodriguez et al., 2014). 

Then, the objectives of this work are, for one hand, to 

quantify the aggressiveness of different isolates of H. 

vastatrix and to determine the health of Photosystem II 

when it is affected by the isolates of CLR collected in the 

province of Convención in Cusco. 

 

MATERIALS & METHODS 

 

Urediniospores Collection 

 The urediniospores were collected with gelatin 

capsules from well sporulated lesions on 4 districts 

(Huayopata, Santa Ana, Vilcabamba and Maranura) in La 

Convencion province, Cusco (Peru) (Fig. 1) (Várzea, 

2016). Coffee plantations with high incidence of H. 

vastatrix were sampled and information of geographic 

reference, famer, cultivar, and severity were recorded 

(Table 1). The urediniospore collection was performed in 

May (2023).  

 The gelatin capsules with urediniospores were labelled 

and transported to the ¨Tropical Crops¨ laboratory of the 

National Agrarian La Molina University (UNALM) in San 

Ramon, Junin (Peru) (altitude: 965 m.a s. l.; latitude 11° 

5'44.62"S and longitude 75°21'8.49"W) (Fig. 2). 

 
Table 1: Collection data from coffee farms in La Convención, Cusco 

Farm Date Producer Altitude East (m) North (m) Locality District Province Region Cultivar Plant age 

1RS 15/05/23 Alberto Aucapuro 1316 759279 8560982 Chuyamayo Huayopata La Convencion Cuzco Caturra 8 

2RS 15/05/23 Teodoro Quispe 1450 759440 8561243 Chalanque Huayopata La Convencion Cuzco Typica 8 

3RS 15/05/23 Washintong Saive 1553 762267 8561176 Huayopata Huayopata La Convencion Cuzco Geisha 10 

4RS 16/05/23 Frank Palomino 1510 742732 8573172 Esmeralda Santa Ana La Convencion Cuzco Typica 15 

5RS 16/05/23 Orlando Tupayachi 1470 743063 8573076 Cacaopampa Santa Ana La Convencion Cuzco Typica 30 

6RS 16/05/23 Ricardo Quintanilla 1484 743354 8572798 Cacaopampa Santa Ana La Convencion Cuzco Typica 30 

7RS 16/05/23 Javier Tupegachi 1408 744087 8572914 Ipal Santa Ana La Convencion Cuzco Typica 30 

8RS 17/05/23 Walter Gonzales 1591 748053 8558737 Mesacancha Vilcabamba La Convencion Cuzco Typica 20 

9RS 17/05/23 Porfirio Quispe Quispe 1582 747717 8559140 Moyomonte Vilcabamba La Convencion Cuzco Typica 20 

10RS 17/05/23 Noemi Pumacayo 1595 746746 8559354 Ipal Bajo Vilcabamba La Convencion Cuzco Typica 15 

11RS 17/05/23 Cesar Carrillo Mar 1899 735054 8557983 Oyara Vilcabamba La Convencion Cuzco Typica 20 

12RS 17/05/23 Sergio Vilxhag 1865 736334 8557547 Oyara Vilcabamba La Convencion Cuzco Typica 20 

13RS 17/05/23 Eusebio Fuentes 1584 743927 8558203 Accorcona Vilcabamba La Convencion Cuzco Typica 25 

14RS 18/05/23 Adele Avenas 1363 755058 8566521 Kcosñipata Maranura La Convencion Cuzco Typica 10 

15RS 18/05/23 René Escalante 1753 751315 8570421 Huayllapata Maranura La Convencion Cuzco Typica 1 

 

 

Fig. 1: Map of some districts of La 

Convención province where the H. 

vastatrix islates were collected; HY: 

Huayopata, SA: Santa Ana, VB: 

Vilcabamba, MA: Maranura. 

 

 

Fig. 2: Urediniospores collection with 

gelatin capsules in La Convencion, 

Peru. 
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Inoculation 

 Two leaves of 6-months coffee seedlings cv. Bourbon 

was inoculated with urediniospores of H. vastatrix (about 

1mg per pair of leaves) in the ¨Tropical Crops¨ 

greenhouse of the National Agrarian La Molina University 

(UNALM) in San Ramon, Junin (Peru) (Fig. 3). The 

inoculation was performed with a camel´s hairbrush on 

the lower surface of the leaf at 5:00 pm when the 

temperature was around of 23°C and the relative 

humidity was of 87% (Fig. 5). The inoculated leaves were 

sprayed with distilled water and enveloped with a humid 

plastic bag for 24h. To avoid the direct incidence of the 

sun rays, the plastic bags were covered with newspaper 

sheets (Várzea et al., 2023). 

 

 

 

 

 

 

 

A B C 
 

 

Fig. 3: Inoculation of Hemileia vastatrix on attached leaves; A: Brushed with 

a camel´s hairbrush B:  Enveloped with a humid plastic bag during 24 h C: 

Covered with newspaper sheets. 

 

 

 

Fig. 4: Infection frequency scale of coffee leaf rust (0-9) adapted from Eskes 

(1983). 

 

Aggressiveness Assessment 

 Aggressiveness components were measured on each 

inoculated leaf. The period of incubation was measured as 

the time (days) between the inoculation and the 

appearance of the early symptoms (Santacreo, 1989). The 

infection frequency (Fig. 4) as the number of sporulated 

lesions per leaf in the 35th day after inoculation, using an 

arbitrary scale (0-9) proposed by Eskes (1983) (Fig. 45). The 

latent period as the time (days) between the inoculation 

and the production of urediniospores (Leguizamón et al., 

1998) and medium latent period as the time (days) 

between the inoculation and the production of 

urediniospores of 50% of the lesions (Costa et al., 2007). 

 

Ecophysiological Assessment 

 Chlorophyll content was estimated by a chlorophyll 

meter SPAD-502 PLUS KONICA MINOLTA. Likewise, for the 

OJIP test, the fluorometer OP-30p OPTI-SCIENCE was used 

to quantify the parameters as Fv/Fm (maximal 

photochemistry activity), PI (Performace Index), ABS/RC 

(Mean absorbed photon flux per PS II reaction center), 

TRO/RC (maximum trapped exciton flux per PS II) and 

ETO/RC (Electron transport flux from QA to QB per PS II) 

(Stirbet and Govindjee, 2011). The measurements were 

performed on the 1 st, 19th, 35th, and the 41th day after 

inoculation. 

 

 

 

Fig. 5: Temperature (℃) and relative humidity (%) during the experiment in 

San Ramón, Perú. 

 

Data Analysis 

 The treatments consisted in fifteen isolates of H. 

vastatrix from La Convencion province, Cusco. Each 

treatment consisted on 5 replicates (1 replicate = 1 

seedling). The experimental design was completely 

randomized. One-way analysis (ANOVA) was used and a 

multiple comparison test was done using Tukey (95%). 

 

RESULTS 

 

Aggressiveness Assessment 

 The incubation period (IP), latent period (LP) and 

medium latent period (LPM) varied significantly among the 

isolates, ranging from 18 to 20.22 for IP, 28.1 to 33 for LP 

and 32 to 38.14 for LPM (days). The infection frequency (IF) 

ranged from 8 in the most highly aggressive isolates and 

2.75 for the least aggressive (Fig. 6). 

 The differences among isolates for the aggressiveness 

components measured are shown in Fig. 6. For instance, 

the isolate 3RS was the least aggressive for all isolates with 

21 days for IP, 33 days for LP, 36 days for LPM and 2.2 for 

IF. Similar tendency was found in the isolate 1RS. However, 

there is not consistent results for the most aggressive 

isolate in all four components. For the IP, the isolates 4RS, 

7RS, 11RS, 12RS, and 14RS reported the lowest values 

around 18 days. However, for the IF, the isolates 5RS 

presented the highest value 8. 

 
Content of Chlorophylls 

 The level of chlorophylls showed a decrease during 

the experiment, especially after the LP. At the end of the 

evaluation (41dds), we observed that the level of 

chlorophylls fell significantly in a range of 4.6%-31.15% in 

most of the isolations (except the 1RS and 13RS) (Fig. 7) 
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compared to the initial evaluation. 1RS and 13RS showed 

the same content of chlorophylls during the experiment 

(P≤0.05). 

 

 

 

Fig. 6: Aggressiveness of different population of H. vastatrix collected in 

Cusco; Incubation period B) Infection frequency C) Latent period D) 

Medium latent period. Different letters indicate statistical differences 

(Tukey 95%). 

 

OJIP Test 

 In general, we observed a trend of diminishing the 

value of Fv/Fm as the appearance of sings incremented. 

The majority of CLR populations did not cause significant 

effect on Fv/Fm showing a range from 0.51 to 0.73, at 41 

dds. In the case of populations 9RS, 10RS, 13RS, 14RS and 

15RS, they presented significant fall in the value of Fv/Fm 

of 15%, 27%, 9%, 18% and 32% at the end compared to 

the first sampling (Fig. 8). 

 Likewise, for Performance Index (PI), most of isolates 

provoked a decrease of PI in the last evaluation; although, 

this fall was not significant. The range of PI varied from 

1.69 to 5.18 (Fig. 9). 

 ETo/RC was not affected by populations of H. vastatrix 

(P≤0.05) except in 6RS where a significant increase was 

recorded in the last sampling. In the case of ABS/RC, just 

the populations 9RS, 10RS, 14RS and 15RS increased their 

value in 23%, 149%, 74% and 108% (compared to the 

initial evaluation), respectively. Only the isolate 9RS 

showed a significant increment of TRo/RC of 23.5% in the 

last measurement (Table 2). 

DISCUSSION 

 

Aggressiveness 

 The aggressiveness of different isolates of H. vastatrix 

from Peruvian regions has been few studied (Palacios et al., 

2025). This character is associated to incomplete 

resistance, it means that low aggressiveness can be 

associated to multiples resistance gens in coffee plants 

(Várzea et al., 2023). In Peruvian conditions, Quispe-Apaza 

et al. (2017) and Quispe-Apaza et al. (2021) reported 

genetic variability of H. vastatrix. In the last year, Julca-

Otiniano et al. (2024b) stated the presence of different 

races of H. vastatrix. 

 The genetic variability of different pathotypes of H. 

vastatrix can explain the different degrees of 

aggressiveness found in this work (Fig. 6). In general, the 

results obtained for IP were less than report by Pozza et al. 

(2021) and Pires et al. (2020) who found IP of 25-30 days, 

even Kushalappa and Martins (1980) reported that IP can 

extend until 65 days. On contrary, the values of LP noticed 

in this work were in range of those ones reported by 

Toniutti et al. (2017) (21-37 days) and Maia et al. (2017) 

(17-50 days). 

 The frequency of infection is the most effective 

method for assessing the damage caused by coffee leaf 

rust, as it involves counting pustules, providing a more 

precise and less subjective measurement (Gallego-Sánchez 

et al., 2020). The IF is an scale that is associated to the 

severity of the disease. The severity, at the same time, is a 

character heavily associated to incidence (Julca et al., 

2019), as well. In peru, the severity has been studied by 

Borjas-Ventura et al. (2020) and Alvarado-Huamán et al. 

(2020), in both cases an increase in the precipitation 

increases the severity of H. vastatrix. Furthermore, the 

severity is high in susceptible cultivars and when the coffee 

plant is fruiting. 

 In particular, it was noticed that as 1RS as 3RS were 

the least aggressive (Fig. 6). Both 1RS and 3RS displayed 

low value of Infection Fequency (IF). The behaviour of the 

isolates 1RS and 3RS imply that the establishment and 

development of H. vastatrix intra and intercellularly can 

vary slightly when the pathogen is inside the cell. It is 

reported that when the pathogens are inside the plant cell, 

they are able to create suitable conditions, through certain 

proteins (effectors), for successful colonization (Lovelace et 

al., 2023). Subit et al. (2021) indicated that disease 

progression may vary when the pathogen is within the cell, 

as fungal maturation requires differentiation into sori. 

 

Content of Chlorophylls 

 Chlorophylls are essential pigments in plants as they 

absorb energy from sunlight for photosynthesis, a crucial 

process for growth (Ebrahimi et al., 2023; Zulkarnaini et al., 

2019; Jin et al., 2023). Leaf greenness serves as an indicator 

of chlorophyll content, as it reflects the photosynthetic 

capacity and overall health of plants (Zulkarnaini et al., 

2019). This variable is considered a physiological indicator, 

with higher levels associated with optimal conditions for 

growth and development, and low levels with stress 

conditions (Motyka et al., 2020). 
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Table 2: ETo/RC, ABS/RC, and TRo/RC after the inoculation of H. vastatrix from Cusco on coffee seedlings cv Bourbon 

 ETo/RC ABS/RC TRo/RC 

 1dds 19dds 35dds 41dds 1dds 19dds 35dds 41dds 1dds 19dds 35dds 41dds 

1RS 4.72±0.13 a 4.56±0.14 a 4.62±0.13 a 4.87±0.16 a 1.69±0.04 a 1.72±0.05 a 1.75±0.05 a 2.33±0.48 a 1.28±0.03 a 1.31±0.04 a 1.28±0.03 a 1.31±0.06 a 

2RS 4.51±014 a 4.64±0.07 a 4.95±0.17 a 4.78±0.18 a 1.74±0.06 a 1.68±0.03 a 2.04±0.35 a 2.04±0.35 a 1.29±0.04 a 1.29±0.03 a 1.27±0.04 a 1.5±0.19 a 

3RS 4.35±0.21 b 4.48±0.09 b 5.21±0.14 a 4.65±0.16 ab 1.73±0.07 a 1.68±0.07 a 1.74±0.06 a 1.83±0.08 a 1.29±0.05 a 1.28±0.05 a 1.29±0.03 a 1.3±0.03 a 

4RS 4.4±0.06 a 4.7±0.06 a 4.74±0.38 a 4.86±0.27 a 1.68±0.05 a 1.59±0.02 a 2.00±0.37 a 2.13±0.21 a 1.26±0.03 ab 1.23±0.01 b 1.27±0.06 ab 1.4±0.04 a 

5RS 4.43±0.17 b 4.57±0.07 ab 5.11±0.17 a 4.38±0.13 b 1.79±0.04 a 1.64±0.02 b 1.73±0.04 ab 1.73±0.04 ab 1.33±0.03 a 1.26±0.01 a 1.31±0.03 a 1.27±0.02 a 

6RS 4.28±0.12 b 4.78±1.17 ab 5.48±0.3 a 5.23±0.21 a 1.71±0.04 a 1.68±0.05 a 1.87±0.07 a 1.92±0.21 a 1.28±0.02 a 1.28±0.04 a 1.36±0.04 a 1.36±0.06 a 

7RS 4.54±0.21 a 4.72±0.08 a 4.94±0.59 a 4.59±0.12 a 1.71±0.03 a 1.67±0.05 a 1.68±0.24 a 2.05±0.29 a 1.29±0.03 a 1.27±0.03 a 1.23±0.16 a 1.37±0.08 a 

8RS 4.19±0.06 b 4.7±0.1 b 5.69±0.45 a 4.59±0.14 b 1.63±0.04 a 1.71±0.06 a 1.75±0.08 a 1.76±0.07 a 1.24±0.03 a 1.3±0.04 a 1.35±0.07 a 1.31±0.04 a 

9RS 4.27±0.1 b 4.8±0.11 b 5.63±0.23 a 4.85±0.15 b 1.66±0.03 b 1.73±0.03 b 1.94±0.11 ab 2.05±0.12 a 1.25±0.02 b 1.3±0.02 b 1.38±0.04 ab 1.43±0.07 a 

10RS 3.99±0.13 a 4.74±0.09 a 5.11±0.71 a 4.51±0.42 a 1.62±0.04 b 1.65±0.05 b 1.9±0.32 b 4.03±1.37 a 1.22±0.25 a 1.24±0.04 a 1.37±0.09 a 4.47±1.17 a 

11RS 4.13±0.11 a 4.58±0.01 a 4.88±0.65 a 4.88±0.26 a 1.71±0.04 a 1.61±0.05 a 1.97±0.27 a 2.24±0.51 a 1.28±0.03 a 1.21±0.04 a 1.33±0.15 a 0.94±0.44 a 

12RS 3.95±0.08 b 4.96±0.12 a 5.49± 0.27 a 3.77±0.07 b 1.63±0.04 a 1.78±0.06 a 1.78± 0.07 a 1.9±0.16 a 1.22±0.02 a 1.31±0.03 a 1.32± 0.04 a 1.27±0.05 a 

13RS 4.91±0.15 b 5.07±0.13 b 6.63±0.61 a 4.12±0.13 b 1.8±0.05 a 1.8±0.06 a 2.10±0.08 a 2±0.19 a 1.36±0.04 ab 1.31±0.05 ab 1.35±0.06 a 1.44±0.05 b 

14RS 4.12±0.12 b 4.55±0.08 ab 4.74±0.14 a 4.12±0.17 b 1.72±0.04 b 1.76±0.05 b 1.95±0.11 ab 2.99±0.84 a 1.31±0.02 a 1.33±0.02 a 1.95±0.05 a 2.99±0.13 a 

15RS 4.1±0.01 b 4.56±0.09 ab 4.98±0.2 a 4.42±0.36 ab 1.73±0.04 b 1.71±0.05 b 1.84±0.08 b 3.59±0.8 a 1.31±0.03 ab 1.3±0.04 b 1.35±0.05 ab 1.75±0.24 a 

Different letters indicate statistical differences (Tukey 95%) in the same row. dds: days after inoculation 

 

    

    

    

    
 

Fig. 7: Chlorophyll content after the inoculation of H. vastatrix from Cusco on coffee seedlings cv Bourbon; dds: Days after inoculation. Red line: Medium 

latent period. PI: Incubation period. PL: Latent period. Different letters indicate statistical differences (Tukey 95%). dds: days after inoculation.  
 

    

    

    

    
 

Fig. 8: Fv/Fm ratio after the inoculation of H. vastatrix from Cusco on coffee seedlings cv Bourbon; dds: days after inoculation.  Red line: Medium latent 

period. PI: Incubation period. PL: Latent period. dds: days after inoculation. Different letters indicate statistical differences (Tukey 95%). 
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Fig. 9: Performance Indez (PI) after the inoculation of H. vastatrix from Cusco on coffee seedlings cv Bourbon; dds: days after inoculation. Red line: Medium 

latent period. PI: Incubation period. PL: Latent period. dds: days after inoculation. Different letters indicate statistical differences (Tukey 95%). 

 

 In the context of H. vastatrix infection, pathogen-

induced chlorosis markly after latency period (LP). This 

results in a decrease in the photosynthetic area and 

interruption of the photosynthetic process (Gortari et al., 

2018). When pathogens enter to plant cell, they release 

effectors and phytotoxins that alter the structure and 

functions of chloroplasts (including the production of 

chlorophylls) provoking chloroses (Lu and Yao, 2018). 

 Particularly, at the end of the evaluation, 3RS 

provoked a fall in the content of chlorophylls less dramatic 

than 5RS. This difference among 3RS and 5RS might be 

related to different mechanisms of colonization and 

manipulation of cellular activities (Lovelace et al., 2023). 

Our results confirm that the population 3RS is less 

pathogenic than 5RS (Fig. 7). 

 

OJIP Test 

 The OJIP test facilitates the assessment of the 

physiological status of photosystem II (PSII) and electron 

transport chain components during photosynthesis 

(Toniutti et al., 2017), although it has rarely been used in 

the analysis of H. vastatrix (Honorato Júnior et al., 2015a; 

Salcedo-Sarmiento et al., 2021; Vitória et al., 2023). In dark-

adapted plants, Fv/Fm values typically range between 0.75 

and 0.85, reflecting an estimate of photosystem II (PSII) 

quantum yield performance. A decrease in this value 

indicates damage by photoinhibition (Carrasco and 

Escobar, 2002). 

 It was notice that just five populations of H. vastatrix 

caused a decrease of this variable (Fig. 8). The fall of the 

level of Fv/Fm has been reported by Honorato Júnior et al. 

(2015a), Honorato Júnior et al. (2015b) and Vitória et al. 

(2023). Likewise, non-inoculated coffee plants can have 

values of Fv/Fm around of 0.8-0.82 (Honorato Júnior et al., 

2015b). Our result implies that coffee leaf rust can affect 

negatively the PS II to not allow the maximum use of the 

photons to trigger photosynthesis. The same effects are 

reported for Fusarium sp. (Kopacki et al., 2016; Bandara et 

al., 2019) and Melanpsora sp. (Gortari et al., 2018). 

 According to León-Burgos et al. (2022), Fv/Fm is 

influenced by chlorophyll content. A decrease in Fv/Fm 

occurs when oxidative damage affects photosynthetic 

pigments, such as chlorophylls, leading to physiological 

alterations in PSII in stressed plants. Therefore, the 

presence of higher levels of chlorophyll may help buffer 

photosynthetic damage caused by H. vastatrix. 

 On the other hand, it was noticed that PI (Performance 

Index) is related to the “density of reaction centers, the 

quantum efficiency of primary photochemistry and 

conversion of excitation energy in electron transport” 

(Strasser et al., 2000). This indicator showed just trends to 

decrease under the presence of different populations of 

coffee leaf rust (Fig. 9). This suggests that PI could not be 

an adequate indicator of the infection of H. vastatrix. 

Fusarium and Colletotrichum graminicola did not cause 

significant variations of PI in in wheat (Spanic et al., 2017) 

and corn (Campos et al., 2021), respectively. However, Yan 

et al. (2018) reported that Fusarium solani decreased PI in 

apple. On contrary, PI is widely used to detect the effect of 

abiotic stressors such as waterlogging (Saravia-Castillo et 

al., 2022), heat, drought (Barboričová et al., 2022) and 

salinity (Salim Akhter et al., 2021). Therefore, it would be 

very important to continue researching and improving the 

use of this tool for H. vastatrix in coffee. 
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 It was noticed a tendency to augment the value of 

ETo/RC even though this trend was significant just for 6RS 

(Table 2). This result implies an improvement of electrons 

moving from QA to QB. Likewise, a small group of 

populations of coffee leaf rust (9RS, 10RS and 15RS) 

presented significant increase in the levels of ABS/RC. This 

variable depicts the quantity of light energy absorbed per 

reaction center (Khan et al., 2021) or the apparent size of 

the antenna of PSII (Ajigboye et al., 2016). This result is 

consistent with other one reported by Baghbani et al. 

(2019), Liu et al. (2023) and Marques et al. (2024) who 

found that Fusarium verticillioides, Bursaphelenchus 

xylophilus and Fusarium equiseti may increase the value of 

ABS/RC. In the case of TRo/RC, H. vastatrix increased its 

value just in the population 9RS. Li et al. (2022) reported 

similar result by examining the effect of Puccinia graminis 

f. sp. avenae on oat. This indicates a rise in the capacity to 

reduce QA. 

 The reduction in levels of chlorophylls and the decline 

in value of Fv/Fm has been accompanied by the increment 

of ABS/RC, ETo/RC and TRo/RC caused by certain 

populations of H. vastatrix might mean a defense 

mechanism to maintain, for one hand, the entrance 

constant of photons by increasing the size of the antenna 

and, for another hand, an adequate flux of electrons from 

PSII to PSI. This type of adaptation has been observed in 

other conditions by Tomar and Jajoo (2013) in wheat. 

 

Conclusion 

 Weather conditions and the coffee genotype in this 

assessment caused a rapid period of incubation (IP) (18-

20.22 days) even though the number of days to the 

appearance of the signs (latent period-LP) was similar to 

other ones reported. The populations 3RS and 5RS were 

different, in other words, 3RS was less aggressive than 

5RS. The isolate 3RS presented long incubation period, 

latent period and medium latent period. 3RS also showed 

lower scale of infection frequency as well. Some 

populations of H. vastatrix caused interesting responses 

in the levels of chlorophylls and in different variables 

associated to OJIP test. On overall, the medium latent 

period was determinant because after that time the levels 

of chlorophyll fell although the fall was more 

considerable in 3RS than 5RS. We also detected a 

photosynthetic defense mechanism that consisted in the 

increment of ABS/RC, ETo/RC and TRo/RC when the 

levels of Fv/Fm have fallen. 
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